Errata: Principal eigenvalue estimates via the supremum of torsion

IF 1.2 2区 数学 Q1 MATHEMATICS
T. Giorgi, R. G. Smits
{"title":"Errata: Principal eigenvalue estimates via the supremum of torsion","authors":"T. Giorgi, R. G. Smits","doi":"10.1512/IUMJ.2010.59.3935","DOIUrl":null,"url":null,"abstract":"We show that the reciprocal of the principal eigenvalue of some operators is comparable to the supremum of the solution to associated generalized torsion problems or the expected exit time for stochastic processes. As a result, we extend estimates, known for the Laplacian on simply connected two-dimensional domains, to general n-dimensional domains, to symmetric stable processes and to the p-Laplacian. Our proofs rely on probabilistic estimates and interpretations of the eigenvalues and the torsion functions.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1512/IUMJ.2010.59.3935","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/IUMJ.2010.59.3935","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

Abstract

We show that the reciprocal of the principal eigenvalue of some operators is comparable to the supremum of the solution to associated generalized torsion problems or the expected exit time for stochastic processes. As a result, we extend estimates, known for the Laplacian on simply connected two-dimensional domains, to general n-dimensional domains, to symmetric stable processes and to the p-Laplacian. Our proofs rely on probabilistic estimates and interpretations of the eigenvalues and the torsion functions.
勘误:通过最优扭转估计主特征值
我们证明了一些算子的主特征值的倒数与相关广义扭转问题解的极值或随机过程的期望退出时间相当。因此,我们将素以二维单连通域上的拉普拉斯估计推广到一般的n维域、对称稳定过程和p-拉普拉斯估计。我们的证明依赖于对特征值和扭转函数的概率估计和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信