Machine learning model for dynamical response of nano-composite pipe conveying fluid under seismic loading

IF 5.3 Q1 ENGINEERING, MECHANICAL
B. Keshtegar, M. Nehdi
{"title":"Machine learning model for dynamical response of nano-composite pipe conveying fluid under seismic loading","authors":"B. Keshtegar, M. Nehdi","doi":"10.1504/ijhm.2019.10026987","DOIUrl":null,"url":null,"abstract":"Machine learning approaches including support vector regression (SVR) and multi-layer feedforward backpropagation neural network (FFBNN) were used in the present study along with classic theory for predicting maximum displacement of nanocomposite pipe conveying fluid under seismic load. The FFBNN consisted of three layers: 1) three neurons in input layer including length-to-radius ratio (L/R), fluid velocity (V) and volume percent of carbon nanotube; 2) hidden layer with 11 neurons obtained via trial and error; 3) maximum displacement-based seismic load. SVR model was obtained via three-input data with maximum likelihood estimator. Model predicted results were compared using three metrics, including Nash-Sutcliffe efficiency, root mean squared error and coefficient of correlation for 100 testing and 255 training data points. Results indicated that SVR achieved best predictions in the training phase, while FFBNN provided superior prediction in the testing phase. Increasing L/R, V and decreasing VCNT, increased maximum displacements under seismic load.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2019.10026987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 17

Abstract

Machine learning approaches including support vector regression (SVR) and multi-layer feedforward backpropagation neural network (FFBNN) were used in the present study along with classic theory for predicting maximum displacement of nanocomposite pipe conveying fluid under seismic load. The FFBNN consisted of three layers: 1) three neurons in input layer including length-to-radius ratio (L/R), fluid velocity (V) and volume percent of carbon nanotube; 2) hidden layer with 11 neurons obtained via trial and error; 3) maximum displacement-based seismic load. SVR model was obtained via three-input data with maximum likelihood estimator. Model predicted results were compared using three metrics, including Nash-Sutcliffe efficiency, root mean squared error and coefficient of correlation for 100 testing and 255 training data points. Results indicated that SVR achieved best predictions in the training phase, while FFBNN provided superior prediction in the testing phase. Increasing L/R, V and decreasing VCNT, increased maximum displacements under seismic load.
地震荷载作用下纳米复合材料管道动力响应的机器学习模型
采用支持向量回归(SVR)和多层前馈反向传播神经网络(FFBNN)等机器学习方法,结合经典理论对纳米复合材料管道在地震荷载作用下的最大位移进行预测。FFBNN由三层组成:1)输入层有三个神经元,包括长半径比(L/R)、流体速度(V)和碳纳米管体积百分比;2)通过试错法获得包含11个神经元的隐藏层;3)基于最大位移的地震荷载。采用极大似然估计方法,通过三输入数据得到SVR模型。对100个测试数据点和255个训练数据点的模型预测结果使用三个指标进行比较,包括Nash-Sutcliffe效率、均方根误差和相关系数。结果表明,SVR在训练阶段的预测效果最好,而FFBNN在测试阶段的预测效果更好。增大L/R和V,减小VCNT,增大地震荷载作用下的最大位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
32
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信