Extensions of symmetric operators I: The inner characteristic function case

IF 0.3 Q4 MATHEMATICS
R.T.W. Martin
{"title":"Extensions of symmetric operators I: The inner characteristic function case","authors":"R.T.W. Martin","doi":"10.1515/conop-2015-0004","DOIUrl":null,"url":null,"abstract":"Abstract Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2014-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2015-0004","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2015-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB.
对称算子I的扩展:内特征函数情况
给定Hilbert空间上的一个对称线性变换,一个自然要考虑的问题是它的对称扩展集的刻画。这个问题等价于研究固定偏等距的偏等距扩展。通过构造该集合的商与大于或等于θB的所有压缩解析函数φ的集合之间的一个双射,给出了具有有限等指标的对称线性变换B的所有自伴随扩展集和内部Livšic特征函数θB的一个新的函数论刻划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信