{"title":"Vibrations of a Horizontal Elastic Band Plate Submerged in Fluid of Constant Depth","authors":"K. Szmidt, B. Hedzielski","doi":"10.1515/heem-2016-0012","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with free and forced vibrations of a horizontal thin elastic plate submerged in an infinite layer of fluid of constant depth. In free vibrations, the pressure load on the plate results from assumed displacements of the plate. In forced vibrations, the fluid pressure is mainly induced by water waves arriving at the plate. In both cases, we have a coupled problem of hydrodynamics in which the plate and fluid motions are coupled through boundary conditions at the plate surface. At the same time, the pressure load on the plate depends on the gap between the plate and the fluid bottom. The motion of the plate is accompanied by the fluid motion. This leads to the so-called co-vibrating mass of fluid, which strongly changes the eigenfrequencies of the plate. In formulation of this problem, a linear theory of small deflections of the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation is constructed in the doubly connected infinite fluid domain. To this end, this infinite domain is divided into sub-domains of simple geometry, and the solution of the problem equation is constructed separately for each of these domains. Numerical experiments are conducted to illustrate the formulation developed in this paper.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2016-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper deals with free and forced vibrations of a horizontal thin elastic plate submerged in an infinite layer of fluid of constant depth. In free vibrations, the pressure load on the plate results from assumed displacements of the plate. In forced vibrations, the fluid pressure is mainly induced by water waves arriving at the plate. In both cases, we have a coupled problem of hydrodynamics in which the plate and fluid motions are coupled through boundary conditions at the plate surface. At the same time, the pressure load on the plate depends on the gap between the plate and the fluid bottom. The motion of the plate is accompanied by the fluid motion. This leads to the so-called co-vibrating mass of fluid, which strongly changes the eigenfrequencies of the plate. In formulation of this problem, a linear theory of small deflections of the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation is constructed in the doubly connected infinite fluid domain. To this end, this infinite domain is divided into sub-domains of simple geometry, and the solution of the problem equation is constructed separately for each of these domains. Numerical experiments are conducted to illustrate the formulation developed in this paper.
期刊介绍:
Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.