The Pull-out Capacity of Suction Caissons in Model Investigations

Q4 Environmental Science
A. Sawicki, Ł. Wachowski, M. Kulczykowski
{"title":"The Pull-out Capacity of Suction Caissons in Model Investigations","authors":"A. Sawicki, Ł. Wachowski, M. Kulczykowski","doi":"10.1515/heem-2016-0010","DOIUrl":null,"url":null,"abstract":"Abstract A small-scale model experiment on the pull-out resistance of suction caissons is described. The pull-out force and suction developed within the caisson in the extraction process were recorded during the experiment. A simple breakout model, together with an elementary static formulae, is applied to predict the results obtained experimentally. There is a reasonably good agreement between the experimental results and predictions. An extensive discussion of the approach applied is included. The analysis presented in this paper is original, as it differs from other approaches mentioned in this paper, and leads to acceptable predictions. At the end, the results are also compared with another approach for predicting the capacity of suction caissons.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/heem-2016-0010","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2016-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract A small-scale model experiment on the pull-out resistance of suction caissons is described. The pull-out force and suction developed within the caisson in the extraction process were recorded during the experiment. A simple breakout model, together with an elementary static formulae, is applied to predict the results obtained experimentally. There is a reasonably good agreement between the experimental results and predictions. An extensive discussion of the approach applied is included. The analysis presented in this paper is original, as it differs from other approaches mentioned in this paper, and leads to acceptable predictions. At the end, the results are also compared with another approach for predicting the capacity of suction caissons.
模型研究中吸式沉箱的抽拔能力
摘要进行了吸力沉箱拉拔阻力的小尺度模型试验。实验中记录了抽取过程中沉箱内的抽拔力和吸力的变化。用一个简单的破口模型和一个基本的静力公式来预测实验结果。在实验结果和预测之间有相当好的一致性。对所采用的方法进行了广泛的讨论。本文中提出的分析是原创的,因为它不同于本文中提到的其他方法,并导致可接受的预测。最后,将所得结果与另一种吸式沉箱承载力预测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Hydroengineering and Environmental Mechanics
Archives of Hydroengineering and Environmental Mechanics Environmental Science-Water Science and Technology
CiteScore
1.30
自引率
0.00%
发文量
4
期刊介绍: Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信