Assessment of Equivalence of Small and Large Orifice Computational Models

Q4 Environmental Science
Michał Kubrak
{"title":"Assessment of Equivalence of Small and Large Orifice Computational Models","authors":"Michał Kubrak","doi":"10.1515/heem-2015-0020","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper was to analyze theoretical aspects of calculating steady water flow through unsubmerged circular orifices. Theoretical analysis shows that the values of discharge obtained by using formulas intended for small orifices are greater than those calculated using formulas for large orifices. These differences attain a maximum value when the water level reaches the upper edge of the orifice, and decrease when water head increases. It has been proven that the volumetric flow rate for circular unsubmerged orifices can be calculated by formulas for small orifices when the water level above the center of gravity is at least four times as high as the diameter of the orifice.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/heem-2015-0020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2015-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The aim of this paper was to analyze theoretical aspects of calculating steady water flow through unsubmerged circular orifices. Theoretical analysis shows that the values of discharge obtained by using formulas intended for small orifices are greater than those calculated using formulas for large orifices. These differences attain a maximum value when the water level reaches the upper edge of the orifice, and decrease when water head increases. It has been proven that the volumetric flow rate for circular unsubmerged orifices can be calculated by formulas for small orifices when the water level above the center of gravity is at least four times as high as the diameter of the orifice.
小孔和大孔计算模型等效性的评估
摘要本文的目的是分析计算非浸没圆孔稳定水流的理论问题。理论分析表明,用小孔口计算公式得到的流量值要大于用大孔口计算公式得到的流量值。当水位达到孔板上边缘时,这些差异达到最大值,当水头增加时,这些差异减小。当重心以上的水位至少为孔直径的4倍时,可以用小孔的公式计算圆孔的体积流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Hydroengineering and Environmental Mechanics
Archives of Hydroengineering and Environmental Mechanics Environmental Science-Water Science and Technology
CiteScore
1.30
自引率
0.00%
发文量
4
期刊介绍: Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信