{"title":"Assessment of Equivalence of Small and Large Orifice Computational Models","authors":"Michał Kubrak","doi":"10.1515/heem-2015-0020","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper was to analyze theoretical aspects of calculating steady water flow through unsubmerged circular orifices. Theoretical analysis shows that the values of discharge obtained by using formulas intended for small orifices are greater than those calculated using formulas for large orifices. These differences attain a maximum value when the water level reaches the upper edge of the orifice, and decrease when water head increases. It has been proven that the volumetric flow rate for circular unsubmerged orifices can be calculated by formulas for small orifices when the water level above the center of gravity is at least four times as high as the diameter of the orifice.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/heem-2015-0020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2015-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The aim of this paper was to analyze theoretical aspects of calculating steady water flow through unsubmerged circular orifices. Theoretical analysis shows that the values of discharge obtained by using formulas intended for small orifices are greater than those calculated using formulas for large orifices. These differences attain a maximum value when the water level reaches the upper edge of the orifice, and decrease when water head increases. It has been proven that the volumetric flow rate for circular unsubmerged orifices can be calculated by formulas for small orifices when the water level above the center of gravity is at least four times as high as the diameter of the orifice.
期刊介绍:
Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.