Singularities of metrics on Hodge bundles and their topological invariants

IF 1.7 1区 数学 Q1 MATHEMATICS
Dennis Eriksson, G. F. I. Montplet, Christophe Mourougane
{"title":"Singularities of metrics on Hodge bundles and their topological invariants","authors":"Dennis Eriksson, G. F. I. Montplet, Christophe Mourougane","doi":"10.14231/AG-2018-021","DOIUrl":null,"url":null,"abstract":"We consider degenerations of complex projective Calabi-Yau varieties and study the singularities of L2, Quillen and BCOV metrics on Hodge and determinant bundles. The dominant and subdominant terms in the expansions of the metrics close to non-smooth fibers are shown to be related to well-known topological invariants of singularities, such as limit Hodge structures, vanishing cycles and log-canonical thresholds. We also describe corresponding invariants for more general degenerating families in the case of the Quillen metric.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2016-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2018-021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

We consider degenerations of complex projective Calabi-Yau varieties and study the singularities of L2, Quillen and BCOV metrics on Hodge and determinant bundles. The dominant and subdominant terms in the expansions of the metrics close to non-smooth fibers are shown to be related to well-known topological invariants of singularities, such as limit Hodge structures, vanishing cycles and log-canonical thresholds. We also describe corresponding invariants for more general degenerating families in the case of the Quillen metric.
霍奇束上度量的奇异性及其拓扑不变量
本文研究了复杂投影Calabi-Yau的退化,并研究了Hodge束和行列式束上L2、Quillen和BCOV度量的奇异性。在接近非光滑纤维的度量展开中的主导项和次主导项被证明与已知的奇点拓扑不变量有关,如极限Hodge结构、消失循环和对数正则阈值。在Quillen度规的情况下,我们还描述了更一般退化族的相应不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信