Fast strategy for PU interpolation: An application for the reconstruction of separatrix manifolds

IF 0.6 Q3 MATHEMATICS
A. Rossi, E. Perracchione, E. Venturino
{"title":"Fast strategy for PU interpolation: An application for the reconstruction of separatrix manifolds","authors":"A. Rossi, E. Perracchione, E. Venturino","doi":"10.14658/PUPJ-DRNA-2016-SPECIAL_ISSUE-2","DOIUrl":null,"url":null,"abstract":"In this paper, the Partition of Unity (PU) method is performed by blending Radial Basis Functions (RBFs) as local approximants and using locally supported weights. In particular, we present a new multidimensional data structure which makes use of an integer-based scheme. This approach allows to perform an optimized space-partitioning structure. Moreover, because of its flexibility, it turns out to be extremely meaningful in the reconstruction of the attraction basins in dynamical systems.","PeriodicalId":51943,"journal":{"name":"Dolomites Research Notes on Approximation","volume":"9 1","pages":"3-12"},"PeriodicalIF":0.6000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dolomites Research Notes on Approximation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14658/PUPJ-DRNA-2016-SPECIAL_ISSUE-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, the Partition of Unity (PU) method is performed by blending Radial Basis Functions (RBFs) as local approximants and using locally supported weights. In particular, we present a new multidimensional data structure which makes use of an integer-based scheme. This approach allows to perform an optimized space-partitioning structure. Moreover, because of its flexibility, it turns out to be extremely meaningful in the reconstruction of the attraction basins in dynamical systems.
PU插补快速策略:在分离矩阵流形重构中的应用
本文通过将径向基函数(rbf)混合作为局部近似,并使用局部支持的权值来实现统一分割(PU)方法。特别地,我们提出了一种新的多维数据结构,它利用了基于整数的方案。这种方法允许执行优化的空间分区结构。此外,由于它的灵活性,对动力系统中吸引盆地的重建具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
7.70%
发文量
0
审稿时长
8 weeks
期刊介绍: Dolomites Research Notes on Approximation is an open access journal that publishes peer-reviewed papers. It also publishes lecture notes and slides of the tutorials presented at the annual Dolomites Research Weeks and Workshops, which have been organized regularly since 2006 by the Padova-Verona Research Group on Constructive Approximation and Applications (CAA) in Alba di Canazei (Trento, Italy). The journal publishes, on invitation, survey papers and summaries of Ph.D. theses on approximation theory, algorithms, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信