Integration and Approximation with Fibonacci lattice points

IF 0.6 Q3 MATHEMATICS
G. Suryanarayana, R. Cools, Dirk Nuyens
{"title":"Integration and Approximation with Fibonacci lattice points","authors":"G. Suryanarayana, R. Cools, Dirk Nuyens","doi":"10.14658/PUPJ-DRNA-2015-SPECIAL_ISSUE-9","DOIUrl":null,"url":null,"abstract":"We study the properties of a special rank-1 point set in 2 dimensions — Fibonacci lattice points. We present the analysis of these point sets for cubature and approximation of bivariate periodic functions with decaying spectral coefficients. We are interested in truncating the frequency space into index sets based on different degrees of exactness. The numerical results support that the Lebesgue constant of these point sets grows like the conjectured optimal rate ln 2 (N), where N is the number of sample points.","PeriodicalId":51943,"journal":{"name":"Dolomites Research Notes on Approximation","volume":"8 1","pages":"92-101"},"PeriodicalIF":0.6000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dolomites Research Notes on Approximation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14658/PUPJ-DRNA-2015-SPECIAL_ISSUE-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the properties of a special rank-1 point set in 2 dimensions — Fibonacci lattice points. We present the analysis of these point sets for cubature and approximation of bivariate periodic functions with decaying spectral coefficients. We are interested in truncating the frequency space into index sets based on different degrees of exactness. The numerical results support that the Lebesgue constant of these point sets grows like the conjectured optimal rate ln 2 (N), where N is the number of sample points.
斐波那契格点的积分与逼近
研究了二维空间中一类特殊的秩1点集-斐波那契格点的性质。我们给出了这些点集的分析,用于建立和逼近具有衰减谱系数的二元周期函数。我们感兴趣的是将频率空间截断成基于不同精确度的索引集。数值结果支持这些点集的Lebesgue常数以推测的最优速率ln 2 (N)增长,其中N为样本点的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
7.70%
发文量
0
审稿时长
8 weeks
期刊介绍: Dolomites Research Notes on Approximation is an open access journal that publishes peer-reviewed papers. It also publishes lecture notes and slides of the tutorials presented at the annual Dolomites Research Weeks and Workshops, which have been organized regularly since 2006 by the Padova-Verona Research Group on Constructive Approximation and Applications (CAA) in Alba di Canazei (Trento, Italy). The journal publishes, on invitation, survey papers and summaries of Ph.D. theses on approximation theory, algorithms, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信