Influence of particle arrangement on the stiffness and thermal expansion coefficient of aluminium-epoxy composites

Q4 Engineering
E. Sideridis, E. K. Ioakeimidis, V. Kytopoulos
{"title":"Influence of particle arrangement on the stiffness and thermal expansion coefficient of aluminium-epoxy composites","authors":"E. Sideridis, E. K. Ioakeimidis, V. Kytopoulos","doi":"10.1504/IJMSI.2016.10003025","DOIUrl":null,"url":null,"abstract":"The stiffness and thermal expansion coefficient of periodic polymer composites containing identical spherical particles are studied using micromechanics principles. A cubic unit cell has been considered to predict thermomechanical properties of particulate polymeric composites. This model takes into account the influence of the distribution (arrangement) of spherical inclusions on the thermomechanical constants of the composite material consisting of matrix and filler. A composite model derived from the cubic and face-centred cubic model representing the basic cell of the composite at a microscopic scale was transformed into a five-phase spherical representative volume element (which will be referred henceforth as R.V.E.), in order to apply the classical theory of elasticity to it. Theoretical values arising from this proposed model were compared with experimental results carried out with epoxy resin composites filled with aluminium particles and also with those obtained from other theoretical formulas derived by other scientists.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":"10 1","pages":"133"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2016.10003025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The stiffness and thermal expansion coefficient of periodic polymer composites containing identical spherical particles are studied using micromechanics principles. A cubic unit cell has been considered to predict thermomechanical properties of particulate polymeric composites. This model takes into account the influence of the distribution (arrangement) of spherical inclusions on the thermomechanical constants of the composite material consisting of matrix and filler. A composite model derived from the cubic and face-centred cubic model representing the basic cell of the composite at a microscopic scale was transformed into a five-phase spherical representative volume element (which will be referred henceforth as R.V.E.), in order to apply the classical theory of elasticity to it. Theoretical values arising from this proposed model were compared with experimental results carried out with epoxy resin composites filled with aluminium particles and also with those obtained from other theoretical formulas derived by other scientists.
颗粒排列对铝-环氧复合材料刚度和热膨胀系数的影响
利用细观力学原理研究了含相同球形颗粒的周期性聚合物复合材料的刚度和热膨胀系数。用立方晶胞来预测颗粒聚合物复合材料的热力学性能。该模型考虑了球形夹杂物的分布(排列)对由基体和填料组成的复合材料的热力学常数的影响。为了将经典弹性理论应用到复合材料模型中,在微观尺度上将代表复合材料基本单元的立方模型和面心立方模型转化为五相球形代表性体积单元(以下简称R.V.E.)。该模型的理论值与填充铝颗粒的环氧树脂复合材料的实验结果以及其他科学家推导的其他理论公式的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信