On the Cauchy problem for dispersive Burgers type equations

IF 1.2 2区 数学 Q1 MATHEMATICS
Ayman Rimah Said
{"title":"On the Cauchy problem for dispersive Burgers type equations","authors":"Ayman Rimah Said","doi":"10.1512/iumj.2023.72.9409","DOIUrl":null,"url":null,"abstract":"We study the paralinearised weakly dispersive Burgers type equation: ∂tu+ ∂x[Tuu]− T ∂xu 2 u+ ∂x |D| α−1 u = 0, α ∈]1, 2[, which contains the main non linear ”worst interaction” terms, i.e low-high interaction terms, of the usual weakly dispersive Burgers type equation: ∂tu+ u∂xu+ ∂x |D| α−1 u = 0, α ∈]1, 2[, with u0 ∈ H (D), where D = T or R. Through a paradifferential complex Cole-Hopf type gauge transform we introduced in [38], we prove a new a priori estimate in H(D) under the control of ∥","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"69 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9409","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the paralinearised weakly dispersive Burgers type equation: ∂tu+ ∂x[Tuu]− T ∂xu 2 u+ ∂x |D| α−1 u = 0, α ∈]1, 2[, which contains the main non linear ”worst interaction” terms, i.e low-high interaction terms, of the usual weakly dispersive Burgers type equation: ∂tu+ u∂xu+ ∂x |D| α−1 u = 0, α ∈]1, 2[, with u0 ∈ H (D), where D = T or R. Through a paradifferential complex Cole-Hopf type gauge transform we introduced in [38], we prove a new a priori estimate in H(D) under the control of ∥
关于色散Burgers型方程的Cauchy问题
研究了paralinearised弱色散汉堡类型方程:∂涂+∂x [Tuu]−T∂徐2 D u +∂x | |α−1 u = 0,α∈]1、2(,其中包含的主要非线性“最差互动”条款,即低交互方面,常见的弱色散汉堡类型方程:∂涂+ u∂徐D +∂x | |α−1 u = 0,α∈]1、2 (,,)uoh∈H (D), D = T或r .通过paradifferential复杂Cole-Hopf类型测量[38]中介绍了变换,我们证明一个新的先验估计在H (D)的控制下∥
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信