{"title":"Hybrid K-means with neural network based Binary Cuckoo Search technique: a classifier for fault prediction in acceptance testing","authors":"Yogomaya Mohapatra, M. Ray","doi":"10.1504/IJSOI.2018.10018749","DOIUrl":null,"url":null,"abstract":"We propose a meta heuristic method using Binary Cuckoo Search to classify the generated test cases that helps to improve the test suite quality. In our proposed method, test cases for acceptance testing of our case study Hospital Management System are generated automatically through the existing tool, Code Pro, and then clustered by using K-means clustering algorithm. Then, the clustered test cases are classified according to their fault detection capability. We propose a novel classifier, hybrid K-means with neural network based Binary Cuckoo Search technique, for classification of generated test cases into two classes, faulty and faultless. The classified result is experimentally evaluated against the existing software metrics, average percentage of faults detected (APFD), problem tracking reports (PTR), and time and memory usage. From the experimental results, we observe that the average percentage of fault detected in our approach is higher than the existing method.","PeriodicalId":35046,"journal":{"name":"International Journal of Services Operations and Informatics","volume":"9 1","pages":"328"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Services Operations and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSOI.2018.10018749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a meta heuristic method using Binary Cuckoo Search to classify the generated test cases that helps to improve the test suite quality. In our proposed method, test cases for acceptance testing of our case study Hospital Management System are generated automatically through the existing tool, Code Pro, and then clustered by using K-means clustering algorithm. Then, the clustered test cases are classified according to their fault detection capability. We propose a novel classifier, hybrid K-means with neural network based Binary Cuckoo Search technique, for classification of generated test cases into two classes, faulty and faultless. The classified result is experimentally evaluated against the existing software metrics, average percentage of faults detected (APFD), problem tracking reports (PTR), and time and memory usage. From the experimental results, we observe that the average percentage of fault detected in our approach is higher than the existing method.
期刊介绍:
The advances in distributed computing and networks make it possible to link people, heterogeneous service providers and physically isolated services efficiently and cost-effectively. As the economic dynamics and the complexity of service operations continue to increase, it becomes a critical challenge to leverage information technology in achieving world-class quality and productivity in the production and delivery of physical goods and services. The IJSOI, a fully refereed journal, provides the primary forum for both academic and industry researchers and practitioners to propose and foster discussion on state-of-the-art research and development in the areas of service operations and the role of informatics towards improving their efficiency and competitiveness.