A collage-based approach to inverse problems for non-linear elliptic PDEs

Q3 Mathematics
K. M. Levere
{"title":"A collage-based approach to inverse problems for non-linear elliptic PDEs","authors":"K. M. Levere","doi":"10.1504/IJMMNO.2012.049605","DOIUrl":null,"url":null,"abstract":"The collage coding solution strategy for ODE inverse problems, first developed in Kunze and Vrscay (1999), controls the approximation error by bounding it above by a more readily minimisable distance. In this paper, we explore a collage coding technique for solving inverse problems for a general class of second-order non-linear elliptic PDEs. The method is based on the nonlinear Lax-Milgram representation theorem and elements of variational calculus. We develop this method for a broad class of non-linear elliptic PDEs and present an example of the method in practice.","PeriodicalId":38699,"journal":{"name":"International Journal of Mathematical Modelling and Numerical Optimisation","volume":"3 1","pages":"281"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJMMNO.2012.049605","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Modelling and Numerical Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMNO.2012.049605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The collage coding solution strategy for ODE inverse problems, first developed in Kunze and Vrscay (1999), controls the approximation error by bounding it above by a more readily minimisable distance. In this paper, we explore a collage coding technique for solving inverse problems for a general class of second-order non-linear elliptic PDEs. The method is based on the nonlinear Lax-Milgram representation theorem and elements of variational calculus. We develop this method for a broad class of non-linear elliptic PDEs and present an example of the method in practice.
非线性椭圆偏微分方程逆问题的拼贴方法
首先由Kunze和Vrscay(1999)开发的ODE逆问题的拼贴编码解决策略,通过用一个更容易最小化的距离将其限定在上面来控制近似误差。本文研究了一类二阶非线性椭圆偏微分方程逆问题的拼贴编码技术。该方法基于非线性Lax-Milgram表示定理和变分微积分的基本原理。我们将此方法应用于一类广义的非线性椭圆偏微分方程,并给出了一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信