Learning multiple distributed prototypes of semantic categories for named entity recognition

Pub Date : 2015-10-01 DOI:10.1504/IJDMB.2015.072766
Aron Henriksson
{"title":"Learning multiple distributed prototypes of semantic categories for named entity recognition","authors":"Aron Henriksson","doi":"10.1504/IJDMB.2015.072766","DOIUrl":null,"url":null,"abstract":"The scarcity of large labelled datasets comprising clinical text that can be exploited within the paradigm of supervised machine learning creates barriers for the secondary use of data from electronic health records. It is therefore important to develop capabilities to leverage the large amounts of unlabelled data that, indeed, tend to be readily available. One technique utilises distributional semantics to create word representations in a wholly unsupervised manner and uses existing training data to learn prototypical representations of predefined semantic categories. Features describing whether a given word belongs to a certain category are then provided to the learning algorithm. It has been shown that using multiple distributional semantic models, each employing a different word order strategy, can lead to enhanced predictive performance. Here, another hyperparameter is also varied--the size of the context window--and an experimental investigation shows that this leads to further performance gains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072766","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.072766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The scarcity of large labelled datasets comprising clinical text that can be exploited within the paradigm of supervised machine learning creates barriers for the secondary use of data from electronic health records. It is therefore important to develop capabilities to leverage the large amounts of unlabelled data that, indeed, tend to be readily available. One technique utilises distributional semantics to create word representations in a wholly unsupervised manner and uses existing training data to learn prototypical representations of predefined semantic categories. Features describing whether a given word belongs to a certain category are then provided to the learning algorithm. It has been shown that using multiple distributional semantic models, each employing a different word order strategy, can lead to enhanced predictive performance. Here, another hyperparameter is also varied--the size of the context window--and an experimental investigation shows that this leads to further performance gains.
分享
查看原文
学习多个分布式语义类别原型,用于命名实体识别
包含可在监督机器学习范式中利用的临床文本的大型标记数据集的稀缺性为电子健康记录数据的二次使用创造了障碍。因此,开发利用大量未标记数据的能力是很重要的,事实上,这些数据往往很容易获得。一种技术利用分布式语义以完全无监督的方式创建单词表示,并使用现有的训练数据来学习预定义语义类别的原型表示。然后将描述给定单词是否属于某个类别的特征提供给学习算法。研究表明,使用多个分布式语义模型,每个模型采用不同的词序策略,可以提高预测性能。这里,另一个超参数也可以改变——上下文窗口的大小——实验研究表明,这可以进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信