In silico identification and functional annotation of yeast E3 ubiquitin ligase Rsp5 substrates

Pub Date : 2015-10-01 DOI:10.1504/IJDMB.2015.072754
Xiaofeng Song, Lizhen Hu, P. Han, Xuejiang Guo, J. Sha
{"title":"In silico identification and functional annotation of yeast E3 ubiquitin ligase Rsp5 substrates","authors":"Xiaofeng Song, Lizhen Hu, P. Han, Xuejiang Guo, J. Sha","doi":"10.1504/IJDMB.2015.072754","DOIUrl":null,"url":null,"abstract":"Rsp5, E3 ligases conserved from yeast to mammals, plays a key role in diverse processes in yeast. However, many of Rsp5 substrates are still unclear. Therefore we proposed an in silico method to recognise new substrates of Rsp5. To investigate the molecular determinants that affect the interaction between Rsp5 and its substrate, we have systematically analysed many features that perhaps correlated with the Rsp5 substrate recognition. It is found that PPxY motif, transmembrane region, disorder region and N-linked glycosylation modification are the most important features for substrate recognition. We have constructed an SVM-based classifier to recognise Rsp5 substrates, obtaining 81.5% sensitivity and 74.1% specificity averagely on ten independent testing dataset. We also applied the model on the whole yeast proteome, and identified -66 new Rsp5 substrates. Functional annotation reveals that half of these novel substrates function in the Rsp5 involved cell processes as Rsp5-interacting proteins.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072754","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.072754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rsp5, E3 ligases conserved from yeast to mammals, plays a key role in diverse processes in yeast. However, many of Rsp5 substrates are still unclear. Therefore we proposed an in silico method to recognise new substrates of Rsp5. To investigate the molecular determinants that affect the interaction between Rsp5 and its substrate, we have systematically analysed many features that perhaps correlated with the Rsp5 substrate recognition. It is found that PPxY motif, transmembrane region, disorder region and N-linked glycosylation modification are the most important features for substrate recognition. We have constructed an SVM-based classifier to recognise Rsp5 substrates, obtaining 81.5% sensitivity and 74.1% specificity averagely on ten independent testing dataset. We also applied the model on the whole yeast proteome, and identified -66 new Rsp5 substrates. Functional annotation reveals that half of these novel substrates function in the Rsp5 involved cell processes as Rsp5-interacting proteins.
分享
查看原文
酵母E3泛素连接酶Rsp5底物的硅基鉴定和功能注释
Rsp5是一种从酵母到哺乳动物保守的E3连接酶,在酵母的多种过程中起着关键作用。然而,许多Rsp5底物仍不清楚。因此,我们提出了一种识别Rsp5新底物的计算机方法。为了研究影响Rsp5与其底物之间相互作用的分子决定因素,我们系统地分析了可能与Rsp5底物识别相关的许多特征。发现PPxY基序、跨膜区、紊乱区和n -链糖基化修饰是底物识别的最重要特征。我们构建了基于svm的Rsp5底物识别分类器,在10个独立测试数据集上平均获得81.5%的灵敏度和74.1%的特异性。我们还将该模型应用于整个酵母蛋白质组,鉴定出-66个新的Rsp5底物。功能注释显示,这些新底物中有一半作为Rsp5相互作用蛋白在Rsp5参与的细胞过程中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信