{"title":"Gene function prediction with knowledge from gene ontology","authors":"Ying Shen, Lin Zhang","doi":"10.1504/IJDMB.2015.070840","DOIUrl":null,"url":null,"abstract":"Gene function prediction is an important problem in bioinformatics. Due to the inherent noise existing in the gene expression data, the attempt to improve the prediction accuracy resorting to new classification techniques is limited. With the emergence of Gene Ontology (GO), extra knowledge about the gene products can be extracted from GO and facilitates solving the gene function prediction problem. In this paper, we propose a new method which utilises GO information to improve the classifiers' performance in gene function prediction. Specifically, our method learns a distance metric under the supervision of the GO knowledge using the distance learning technique. Compared with the traditional distance metrics, the learned one produces a better performance and consequently classification accuracy can be improved. The effectiveness of our proposed method has been corroborated by the extensive experimental results.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 1","pages":"50-62"},"PeriodicalIF":0.2000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070840","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.070840","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Gene function prediction is an important problem in bioinformatics. Due to the inherent noise existing in the gene expression data, the attempt to improve the prediction accuracy resorting to new classification techniques is limited. With the emergence of Gene Ontology (GO), extra knowledge about the gene products can be extracted from GO and facilitates solving the gene function prediction problem. In this paper, we propose a new method which utilises GO information to improve the classifiers' performance in gene function prediction. Specifically, our method learns a distance metric under the supervision of the GO knowledge using the distance learning technique. Compared with the traditional distance metrics, the learned one produces a better performance and consequently classification accuracy can be improved. The effectiveness of our proposed method has been corroborated by the extensive experimental results.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.