Cuckoo search optimisation for feature selection in cancer classification: a new approach

Pub Date : 2015-09-01 DOI:10.1504/IJDMB.2015.072092
C. Gunavathi, K. Premalatha
{"title":"Cuckoo search optimisation for feature selection in cancer classification: a new approach","authors":"C. Gunavathi, K. Premalatha","doi":"10.1504/IJDMB.2015.072092","DOIUrl":null,"url":null,"abstract":"Cuckoo Search (CS) optimisation algorithm is used for feature selection in cancer classification using microarray gene expression data. Since the gene expression data has thousands of genes and a small number of samples, feature selection methods can be used for the selection of informative genes to improve the classification accuracy. Initially, the genes are ranked based on T-statistics, Signal-to-Noise Ratio (SNR) and F-statistics values. The CS is used to find the informative genes from the top-m ranked genes. The classification accuracy of k-Nearest Neighbour (kNN) technique is used as the fitness function for CS. The proposed method is experimented and analysed with ten different cancer gene expression datasets. The results show that the CS gives 100% average accuracy for DLBCL Harvard, Lung Michigan, Ovarian Cancer, AML-ALL and Lung Harvard2 datasets and it outperforms the existing techniques in DLBCL outcome and prostate datasets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072092","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.072092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Cuckoo Search (CS) optimisation algorithm is used for feature selection in cancer classification using microarray gene expression data. Since the gene expression data has thousands of genes and a small number of samples, feature selection methods can be used for the selection of informative genes to improve the classification accuracy. Initially, the genes are ranked based on T-statistics, Signal-to-Noise Ratio (SNR) and F-statistics values. The CS is used to find the informative genes from the top-m ranked genes. The classification accuracy of k-Nearest Neighbour (kNN) technique is used as the fitness function for CS. The proposed method is experimented and analysed with ten different cancer gene expression datasets. The results show that the CS gives 100% average accuracy for DLBCL Harvard, Lung Michigan, Ovarian Cancer, AML-ALL and Lung Harvard2 datasets and it outperforms the existing techniques in DLBCL outcome and prostate datasets.
分享
查看原文
杜鹃搜索优化在癌症分类中的特征选择:一种新方法
利用微阵列基因表达数据,采用布谷鸟搜索(CS)优化算法进行肿瘤分类特征选择。由于基因表达数据有数千个基因,样本数量少,因此可以使用特征选择方法来选择信息量大的基因,以提高分类精度。首先,根据t统计量、信噪比(SNR)和f统计值对基因进行排序。CS用于从排名前m位的基因中寻找信息基因。使用k-最近邻(kNN)技术的分类精度作为CS的适应度函数。用十种不同的癌症基因表达数据集对该方法进行了实验和分析。结果表明,CS对DLBCL Harvard、Lung Michigan、Ovarian Cancer、AML-ALL和Lung Harvard2数据集的平均准确率为100%,并且在DLBCL结局和前列腺数据集上优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信