Sequence based human leukocyte antigen gene prediction using informative physicochemical properties

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
W. Shoombuatong, Panuwat Mekha, Jeerayut Chaijaruwanich
{"title":"Sequence based human leukocyte antigen gene prediction using informative physicochemical properties","authors":"W. Shoombuatong, Panuwat Mekha, Jeerayut Chaijaruwanich","doi":"10.1504/IJDMB.2015.072072","DOIUrl":null,"url":null,"abstract":"Prediction of different classes within the human leukocyte antigen (HLA) gene family can provide insight into the human immune system and its response to viral pathogens. Therefore, it is desirable to develop an efficient and easily interpretable method for predicting HLA gene class compared to existing methods. We investigated the HLA gene prediction problem as follows: (a) establishing a dataset (HLA262) such that the sequence identity of the complete HLA dataset was reduced to 30%; (b) proposing a feature set of informative physicochemical properties that cooperate with SVM (named HLAPred) to achieve high accuracy and sensitivity (90.04% and 82.99%, respectively) compared with existing methods; and (c) analysing the informative physicochemical properties to understand the physicochemical properties and molecular mechanisms of the HLA gene family.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 3 1","pages":"211-24"},"PeriodicalIF":0.2000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072072","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.072072","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Prediction of different classes within the human leukocyte antigen (HLA) gene family can provide insight into the human immune system and its response to viral pathogens. Therefore, it is desirable to develop an efficient and easily interpretable method for predicting HLA gene class compared to existing methods. We investigated the HLA gene prediction problem as follows: (a) establishing a dataset (HLA262) such that the sequence identity of the complete HLA dataset was reduced to 30%; (b) proposing a feature set of informative physicochemical properties that cooperate with SVM (named HLAPred) to achieve high accuracy and sensitivity (90.04% and 82.99%, respectively) compared with existing methods; and (c) analysing the informative physicochemical properties to understand the physicochemical properties and molecular mechanisms of the HLA gene family.
基于序列的人白细胞抗原基因预测,利用信息物理化学性质
预测人类白细胞抗原(HLA)基因家族的不同类别可以深入了解人类免疫系统及其对病毒病原体的反应。因此,与现有方法相比,开发一种高效且易于解释的HLA基因分类预测方法是很有必要的。我们对HLA基因预测问题进行了如下研究:(a)建立一个数据集(HLA262),使完整HLA数据集的序列同一性降低到30%;(b)提出了一种与支持向量机(SVM)配合的信息物理化学性质特征集(命名为HLAPred),与现有方法相比,准确率和灵敏度分别为90.04%和82.99%;(c)分析信息性的理化性质,以了解HLA基因家族的理化性质和分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信