Analyzing Large Biological Datasets with an Improved Algorithm for MIC

Pub Date : 2014-03-14 DOI:10.1504/IJDMB.2015.071548
Shuliang Wang, Yiping Zhao
{"title":"Analyzing Large Biological Datasets with an Improved Algorithm for MIC","authors":"Shuliang Wang, Yiping Zhao","doi":"10.1504/IJDMB.2015.071548","DOIUrl":null,"url":null,"abstract":"The computational framework used the traditional similarity measures to find out the significant relationships in biological annotations. But its prerequisites that the biological annotations do not cooccur with each other is particular. To overcome it, in this paper a new method Improved Algorithm for Maximal Information Coefficient (IAMIC) is suggested to discover the hidden regularities between biological annotations. IAMIC approximates a novel similarity coefficient on maximal information coefficient with generality and equitability, by bettering axis partition through quadratic optimisation instead of violence search. The experimental results show that IAMIC is more appropriate for identifying the associations between biological annotations, and further extracting the novel associations hidden in collected data sets than other similarity measures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071548","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.071548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The computational framework used the traditional similarity measures to find out the significant relationships in biological annotations. But its prerequisites that the biological annotations do not cooccur with each other is particular. To overcome it, in this paper a new method Improved Algorithm for Maximal Information Coefficient (IAMIC) is suggested to discover the hidden regularities between biological annotations. IAMIC approximates a novel similarity coefficient on maximal information coefficient with generality and equitability, by bettering axis partition through quadratic optimisation instead of violence search. The experimental results show that IAMIC is more appropriate for identifying the associations between biological annotations, and further extracting the novel associations hidden in collected data sets than other similarity measures.
分享
查看原文
基于改进MIC算法的大型生物数据集分析
计算框架使用传统的相似性度量来找出生物注释中的重要关系。但其先决条件是生物注释不能相互发生。为了克服这一问题,本文提出了一种新的方法——改进的最大信息系数算法(IAMIC)来发现生物注释之间隐藏的规律。IAMIC通过二次优化代替暴力搜索,在最大信息系数上近似出一种新的具有通用性和公平性的相似性系数。实验结果表明,IAMIC比其他相似度度量更适合识别生物注释之间的关联,并进一步提取隐藏在收集数据集中的新关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信