miRNA target recognition using features of suboptimal alignments

Pub Date : 2015-08-01 DOI:10.1504/IJDMB.2015.071523
Ali Katanforoush, Ehsan Mahdavi
{"title":"miRNA target recognition using features of suboptimal alignments","authors":"Ali Katanforoush, Ehsan Mahdavi","doi":"10.1504/IJDMB.2015.071523","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are a class of short RNA molecules that regulate gene expression by binding directly to messenger RNAs. Conventional approaches to miRNA target prediction estimate the accessibility of target sites and the strength of the binding miRNA by finding optimums of some energy models, which involves O(n3) computations. Alternatively, we narrow down potential binding sites of miRNAs to suboptimal hits of a pairwise alignment algorithm called Fitting Alignment in O(n2). We invoke a same algorithm, once for all candidate sites to measure the site accessibilities. These features are applied to a binary classifier being learned to predict true associations between miRNAs and target genes. Training the classifier requires the negative samples indicating non-affected genes. The experiments verifying such negative associations have been rarely performed, so we exploit tissue-specific gene expression data to impute the negative associations. The recall rate of our method is above 70% (at precision 85%).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071523","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.071523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

MicroRNAs (miRNAs) are a class of short RNA molecules that regulate gene expression by binding directly to messenger RNAs. Conventional approaches to miRNA target prediction estimate the accessibility of target sites and the strength of the binding miRNA by finding optimums of some energy models, which involves O(n3) computations. Alternatively, we narrow down potential binding sites of miRNAs to suboptimal hits of a pairwise alignment algorithm called Fitting Alignment in O(n2). We invoke a same algorithm, once for all candidate sites to measure the site accessibilities. These features are applied to a binary classifier being learned to predict true associations between miRNAs and target genes. Training the classifier requires the negative samples indicating non-affected genes. The experiments verifying such negative associations have been rarely performed, so we exploit tissue-specific gene expression data to impute the negative associations. The recall rate of our method is above 70% (at precision 85%).
分享
查看原文
利用次优比对特征识别miRNA目标
MicroRNAs (miRNAs)是一类通过直接结合信使RNA来调节基因表达的短RNA分子。传统的miRNA靶点预测方法是通过寻找一些能量模型的最优值来估计靶点的可达性和结合miRNA的强度,这涉及到O(n3)的计算。或者,我们将mirna的潜在结合位点缩小到称为O(n2)拟合比对的配对比对算法的次优命中。我们对所有候选站点调用一次相同的算法来度量站点的可访问性。这些特征被应用于正在学习的二元分类器,以预测mirna和目标基因之间的真实关联。训练分类器需要负样本表示未受影响的基因。验证这种负关联的实验很少进行,因此我们利用组织特异性基因表达数据来推断负关联。该方法的查全率在70%以上(查准率85%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信