ESTIMATION AND INFERENCE IN PREDICTIVE REGRESSIONS

IF 0.2 4区 经济学 Q4 ECONOMICS
Eiji Kurozumi, K. Aono
{"title":"ESTIMATION AND INFERENCE IN PREDICTIVE REGRESSIONS","authors":"Eiji Kurozumi, K. Aono","doi":"10.15057/26018","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze feasible bias-reduced versions of point estimates for predictive regressions: The plug-in estimates, which are based on the augmented regressions proposed by Amihud and Hurvich (2004) and Amihud, Hurvich and Wang (2010), and the grouped jackknife estimate by Quenouille (1949, 1956).We also derive the correct standard errors associated with these point estimates.The methods thus allow for a unified inferential framework, where point estimates and statistical inference are based on the same methods. Using the new estimates, we investigate U.S. stock returns and find that some variables are able to predict stock returns.","PeriodicalId":43705,"journal":{"name":"Hitotsubashi Journal of Economics","volume":"54 1","pages":"231-250"},"PeriodicalIF":0.2000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hitotsubashi Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.15057/26018","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze feasible bias-reduced versions of point estimates for predictive regressions: The plug-in estimates, which are based on the augmented regressions proposed by Amihud and Hurvich (2004) and Amihud, Hurvich and Wang (2010), and the grouped jackknife estimate by Quenouille (1949, 1956).We also derive the correct standard errors associated with these point estimates.The methods thus allow for a unified inferential framework, where point estimates and statistical inference are based on the same methods. Using the new estimates, we investigate U.S. stock returns and find that some variables are able to predict stock returns.
预测回归中的估计与推断
在本文中,我们分析了预测回归中可行的减少偏差的点估计版本:基于Amihud和Hurvich(2004)和Amihud, Hurvich和Wang(2010)提出的增广回归的插件估计,以及Quenouille(1949, 1956)提出的分组jackknife估计。我们还推导出与这些点估计相关的正确标准误差。因此,这些方法允许一个统一的推理框架,其中点估计和统计推断基于相同的方法。使用新的估计,我们调查了美国股票收益,并发现一些变量能够预测股票收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信