{"title":"COVID-19 pandemic and the economy: sentiment analysis on Twitter data","authors":"Shira Fano, Gianluca Toschi","doi":"10.1504/ijcee.2022.10046488","DOIUrl":null,"url":null,"abstract":"In the last decade, social networks have increasingly been used in social sciences to monitor consumer preferences and citizens' opinion formation, as they are able to produce a massive amount of data. In this paper, we aim to collect and analyse data from Twitter posts identifying emerging patterns related to the COVID-19 outbreak and to evaluate the economic sentiment of users during the pandemic. Using the Twitter API, we collected tweets containing the term coronavirus and at least a keyword related to the economy selected from a pre-determined batch, obtaining a database of approximately two million tweets. We show that our Economic Twitter Index (ETI) is able to nowcast the current state of economic sentiment, exhibiting peaks and drops related to real-world events. Finally, we test our index and it shows a positive correlation to standard economic indicators.","PeriodicalId":42342,"journal":{"name":"International Journal of Computational Economics and Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Economics and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcee.2022.10046488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade, social networks have increasingly been used in social sciences to monitor consumer preferences and citizens' opinion formation, as they are able to produce a massive amount of data. In this paper, we aim to collect and analyse data from Twitter posts identifying emerging patterns related to the COVID-19 outbreak and to evaluate the economic sentiment of users during the pandemic. Using the Twitter API, we collected tweets containing the term coronavirus and at least a keyword related to the economy selected from a pre-determined batch, obtaining a database of approximately two million tweets. We show that our Economic Twitter Index (ETI) is able to nowcast the current state of economic sentiment, exhibiting peaks and drops related to real-world events. Finally, we test our index and it shows a positive correlation to standard economic indicators.
期刊介绍:
IJCEE explores the intersection of economics, econometrics and computation. It investigates the application of recent computational techniques to all branches of economic modelling, both theoretical and empirical. IJCEE aims at an international and multidisciplinary standing, promoting rigorous quantitative examination of relevant economic issues and policy analyses. The journal''s research areas include computational economic modelling, computational econometrics and statistics and simulation methods. It is an internationally competitive, peer-reviewed journal dedicated to stimulating discussion at the forefront of economic and econometric research. Topics covered include: -Computational Economics: Computational techniques applied to economic problems and policies, Agent-based modelling, Control and game theory, General equilibrium models, Optimisation methods, Economic dynamics, Software development and implementation, -Econometrics: Applied micro and macro econometrics, Monte Carlo simulation, Robustness and sensitivity analysis, Bayesian econometrics, Time series analysis and forecasting techniques, Operational research methods with applications to economics, Software development and implementation.