Optimisation design for wind turbine mainshaft bearing based on lubrication reliability

Q2 Engineering
Liang Cao, S. Gong, Y. Tao
{"title":"Optimisation design for wind turbine mainshaft bearing based on lubrication reliability","authors":"Liang Cao, S. Gong, Y. Tao","doi":"10.1504/IJRS.2020.10037445","DOIUrl":null,"url":null,"abstract":"The lubrication of the mainshaft bearing has a great influence on the safe operation of wind turbines. In this paper, an optimal design model of the mainshaft bearing of a wind turbine is established on the lubrication reliability analysis. The maximum rated dynamic load is set as the design objective. The roller number, roller diameter, roller length and wall thicknesses are design parameters. Constraints are formulated mainly based on lubrication reliability and structure consideration. In the lubrication reliability constraint model, the lubrication reliability criterion was determined by solving the minimum film thickness of numerical calculation model of grease EHL. The reliability of bearing lubrication is calculated by Monte Carlo Simulation, and uncertain variables based on sensitivity analysis are selected to improve calculation precision. In the structure constraints, range for the design variables is determined in terms of requirements of geometric structure and strength. Finally, the mainshaft bearing was optimised and analysed by genetic algorithms. The analysis results show that the rated dynamic load of bearing is improved from 1.3e6 N to 2e6 N. Meanwhile the lubrication reliability is improved about 10%. The model presented shows great advantages and practical usefulness in the mainshaft bearing research of wind turbines.","PeriodicalId":39031,"journal":{"name":"International Journal of Reliability and Safety","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRS.2020.10037445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The lubrication of the mainshaft bearing has a great influence on the safe operation of wind turbines. In this paper, an optimal design model of the mainshaft bearing of a wind turbine is established on the lubrication reliability analysis. The maximum rated dynamic load is set as the design objective. The roller number, roller diameter, roller length and wall thicknesses are design parameters. Constraints are formulated mainly based on lubrication reliability and structure consideration. In the lubrication reliability constraint model, the lubrication reliability criterion was determined by solving the minimum film thickness of numerical calculation model of grease EHL. The reliability of bearing lubrication is calculated by Monte Carlo Simulation, and uncertain variables based on sensitivity analysis are selected to improve calculation precision. In the structure constraints, range for the design variables is determined in terms of requirements of geometric structure and strength. Finally, the mainshaft bearing was optimised and analysed by genetic algorithms. The analysis results show that the rated dynamic load of bearing is improved from 1.3e6 N to 2e6 N. Meanwhile the lubrication reliability is improved about 10%. The model presented shows great advantages and practical usefulness in the mainshaft bearing research of wind turbines.
基于润滑可靠性的风电主轴轴承优化设计
主轴轴承的润滑对风力发电机组的安全运行有很大的影响。本文在润滑可靠性分析的基础上,建立了风力发电机主轴轴承的优化设计模型。以最大额定动载荷为设计目标。托辊数、托辊直径、托辊长度和壁厚为设计参数。约束的制定主要基于润滑可靠性和结构考虑。在润滑可靠性约束模型中,通过求解油脂EHL数值计算模型的最小油膜厚度来确定润滑可靠性准则。采用蒙特卡罗仿真方法计算轴承润滑可靠性,选取基于灵敏度分析的不确定变量,提高计算精度。在结构约束中,根据几何结构和强度要求确定设计变量的取值范围。最后,采用遗传算法对主轴轴承进行了优化分析。分析结果表明,轴承的额定动载荷由1.36 N提高到2e6 N,润滑可靠性提高约10%。该模型在风力机主轴轴承研究中具有很大的优越性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Reliability and Safety
International Journal of Reliability and Safety Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.00
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信