Local stress analysis of the lattice boom considering parametric uncertainty

Q2 Engineering
L. Xiaoling, Cheng Kai, Wang Ming-wei, Zhao Erfei
{"title":"Local stress analysis of the lattice boom considering parametric uncertainty","authors":"L. Xiaoling, Cheng Kai, Wang Ming-wei, Zhao Erfei","doi":"10.1504/IJRS.2020.10037441","DOIUrl":null,"url":null,"abstract":"The lattice boom of the crane consists of slender tubes and its stability is of paramount importance. At present, most studies about stability of the lattice boom are based on certain parameters. Considering the uncertainty of the design parameters in actual design and production, the local stress of the lattice boom should be analysed with uncertainty. We propose a response surface method based on D-optimal design to simulate the relationship between each parameter and the local stress of the chord. Based on the obtained response surface function, Monte Carlo method is used to analyse the reliability of the lattice boom. The analysis results show that the uncertainty of the design parameters has a great influence on the local stress of the lattice boom. The initial imperfection factor has the greatest influence, and the interaction between the parameters is relatively small except the initial imperfection factor. The response surface method based on D-optimal design can simulate the complex model function relationship and simplify the complex model, which is highly efficient. So, it has broad application prospects in large-scale complex models.","PeriodicalId":39031,"journal":{"name":"International Journal of Reliability and Safety","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRS.2020.10037441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The lattice boom of the crane consists of slender tubes and its stability is of paramount importance. At present, most studies about stability of the lattice boom are based on certain parameters. Considering the uncertainty of the design parameters in actual design and production, the local stress of the lattice boom should be analysed with uncertainty. We propose a response surface method based on D-optimal design to simulate the relationship between each parameter and the local stress of the chord. Based on the obtained response surface function, Monte Carlo method is used to analyse the reliability of the lattice boom. The analysis results show that the uncertainty of the design parameters has a great influence on the local stress of the lattice boom. The initial imperfection factor has the greatest influence, and the interaction between the parameters is relatively small except the initial imperfection factor. The response surface method based on D-optimal design can simulate the complex model function relationship and simplify the complex model, which is highly efficient. So, it has broad application prospects in large-scale complex models.
考虑参数不确定性的格栅臂局部应力分析
起重机的格栅臂由细长的管构成,其稳定性至关重要。目前,大多数关于点阵臂稳定性的研究都是基于一定的参数。考虑到实际设计和生产中设计参数的不确定性,对格栅臂的局部应力进行不确定性分析。我们提出了一种基于d -最优设计的响应面方法来模拟各个参数与弦的局部应力之间的关系。根据得到的响应面函数,采用蒙特卡罗方法对格架臂的可靠性进行了分析。分析结果表明,设计参数的不确定性对格栅臂的局部应力影响较大。初始缺陷因子的影响最大,除初始缺陷因子外,各参数之间的交互作用相对较小。基于d -最优设计的响应面法可以模拟复杂模型的函数关系,简化复杂模型,效率高。因此,在大型复杂模型中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Reliability and Safety
International Journal of Reliability and Safety Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.00
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信