{"title":"A novel switching group-size GA based on HRL","authors":"Shu Ying-Li, K. Wende","doi":"10.1504/IJWMC.2016.10003221","DOIUrl":null,"url":null,"abstract":"A novel switching group-size genetic algorithm (GA) based on Hierarchical Reinforcement Learning (HRL) is proposed to improve the global optimisation performance by accelerating the convergence speed of genetic algorithm and improving the computational efficiency. In the early stage of the evolution, the group can be expanded to increase diversity, while the group should be downsized to protect the more adaptive individuals in the latter stage. Chromosome crossover operation in the HRL algorithm is regarded as behaviour. Choosing the optimal method according to the specific evolution of the chromosome reflects the optimisation selection. At the same time, abstract and hierarchical system is used to decompose the problem to multilevel sub-task space. The convergence speed is improved by learning strategically in each sub-task space and multiplexing the sub-strategy between layers. The experiment has proved the validity of the algorithm.","PeriodicalId":53709,"journal":{"name":"International Journal of Wireless and Mobile Computing","volume":"11 1","pages":"277-282"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wireless and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWMC.2016.10003221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A novel switching group-size genetic algorithm (GA) based on Hierarchical Reinforcement Learning (HRL) is proposed to improve the global optimisation performance by accelerating the convergence speed of genetic algorithm and improving the computational efficiency. In the early stage of the evolution, the group can be expanded to increase diversity, while the group should be downsized to protect the more adaptive individuals in the latter stage. Chromosome crossover operation in the HRL algorithm is regarded as behaviour. Choosing the optimal method according to the specific evolution of the chromosome reflects the optimisation selection. At the same time, abstract and hierarchical system is used to decompose the problem to multilevel sub-task space. The convergence speed is improved by learning strategically in each sub-task space and multiplexing the sub-strategy between layers. The experiment has proved the validity of the algorithm.
期刊介绍:
The explosive growth of wide-area cellular systems and local area wireless networks which promise to make integrated networks a reality, and the development of "wearable" computers and the emergence of "pervasive" computing paradigm, are just the beginning of "The Wireless and Mobile Revolution". The realisation of wireless connectivity is bringing fundamental changes to telecommunications and computing and profoundly affects the way we compute, communicate, and interact. It provides fully distributed and ubiquitous mobile computing and communications, thus bringing an end to the tyranny of geography.