{"title":"Neural network and rough set hybrid scheme for prediction of missing associations","authors":"A. Anitha, D. Acharjya","doi":"10.1504/IJBRA.2015.073237","DOIUrl":null,"url":null,"abstract":"Currently, internet is the best tool for distributed computing, which involves spreading of data geographically. But, retrieving information from huge data is critical and has no relevance unless it provides certain information. Prediction of missing associations can be viewed as fundamental problems in machine learning where the main objective is to determine decisions for the missing associations. Mathematical models such as naive Bayes structure, human composed network structure, Bayesian network modelling, etc., were developed to this end. But, it has certain limitations and failed to include uncertainties. Therefore, effort has been made to process inconsistencies in the data with the introduction of rough set theory. This paper uses two processes, pre-process and post-process, to predict the decisions for the missing associations in the attribute values. In preprocess, rough set is used to reduce the dimensionality, whereas neural network is used in postprocess to explore the decision for the missing associations. A real-life example is provided to show the viability of the proposed research.","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.073237","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.073237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 20
Abstract
Currently, internet is the best tool for distributed computing, which involves spreading of data geographically. But, retrieving information from huge data is critical and has no relevance unless it provides certain information. Prediction of missing associations can be viewed as fundamental problems in machine learning where the main objective is to determine decisions for the missing associations. Mathematical models such as naive Bayes structure, human composed network structure, Bayesian network modelling, etc., were developed to this end. But, it has certain limitations and failed to include uncertainties. Therefore, effort has been made to process inconsistencies in the data with the introduction of rough set theory. This paper uses two processes, pre-process and post-process, to predict the decisions for the missing associations in the attribute values. In preprocess, rough set is used to reduce the dimensionality, whereas neural network is used in postprocess to explore the decision for the missing associations. A real-life example is provided to show the viability of the proposed research.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.