{"title":"Economic optimisation of range-extended electric bus based on AMGA algorithm","authors":"Zhao Yunfei, Guo Ronghui, Fangwu Ma, Song Jinlong","doi":"10.1504/ijvsmt.2020.10030670","DOIUrl":null,"url":null,"abstract":"The power of a range-extended electric bus comes from its battery and range-extender. How to design the range-extender working point for the vehicle in the process of running is the key factor to achieve energy conservation and emission reduction. To solve this problem, a vehicle model was built by using AVL Cruise simulation software. Through Cruise and Isight co-simulation optimisation, a multi-objective optimisation model for per 100-km fuel consumption and pollutant emission is established. Optimal variables include upper and lower limits of the power unit and working point of the range-extender. Adaptive mutation genetic algorithm (AMGA) was used as optimisation algorithm. Results showed that fuel consumption and pollutant emissions were effectively reduced. The per 100-km fuel consumption decreased by 48.0%, carbon monoxide emission decreased by 49.6%, hydrocarbon emission decreased by 47.28%, and nitrogen oxide emission decreased by 51.1%. The economics of range-extended electric bus have been greatly improved.","PeriodicalId":35145,"journal":{"name":"International Journal of Vehicle Systems Modelling and Testing","volume":"230 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Systems Modelling and Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvsmt.2020.10030670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The power of a range-extended electric bus comes from its battery and range-extender. How to design the range-extender working point for the vehicle in the process of running is the key factor to achieve energy conservation and emission reduction. To solve this problem, a vehicle model was built by using AVL Cruise simulation software. Through Cruise and Isight co-simulation optimisation, a multi-objective optimisation model for per 100-km fuel consumption and pollutant emission is established. Optimal variables include upper and lower limits of the power unit and working point of the range-extender. Adaptive mutation genetic algorithm (AMGA) was used as optimisation algorithm. Results showed that fuel consumption and pollutant emissions were effectively reduced. The per 100-km fuel consumption decreased by 48.0%, carbon monoxide emission decreased by 49.6%, hydrocarbon emission decreased by 47.28%, and nitrogen oxide emission decreased by 51.1%. The economics of range-extended electric bus have been greatly improved.
期刊介绍:
IJVSMT provides a resource of information for the scientific and engineering community working with ground vehicles. Emphases are placed on novel computational and testing techniques that are used by automotive engineers and scientists.