Sistema automático de clasificación de peces

Robinson Jiménez Moreno, Javier Eduardo Martínez Baquero, Luis Alfredo Rodríguez Umaña
{"title":"Sistema automático de clasificación de peces","authors":"Robinson Jiménez Moreno, Javier Eduardo Martínez Baquero, Luis Alfredo Rodríguez Umaña","doi":"10.14483/22484728.14265","DOIUrl":null,"url":null,"abstract":"el presente artículo expone el diseño de una arquitectura de red para reconocimiento de patrones orientada a la clasificación automática de dos tipos de peces: mojarra y tilapia. Se emplea una arquitectura basada en aprendizaje profundo mediante una red neuronal convolucional (RNC) para la cual se determina la base de datos a emplear y los diferentes hiperparámetros que la componen. Se logra obtener, mediante análisis por matriz de confusión, un desempeño del 100% de la red bajo las condiciones controladas el sistema de clasificación, es decir: color de banda transportadora uniforme y uso de luz día.","PeriodicalId":34191,"journal":{"name":"Vision Electronica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Electronica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/22484728.14265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

el presente artículo expone el diseño de una arquitectura de red para reconocimiento de patrones orientada a la clasificación automática de dos tipos de peces: mojarra y tilapia. Se emplea una arquitectura basada en aprendizaje profundo mediante una red neuronal convolucional (RNC) para la cual se determina la base de datos a emplear y los diferentes hiperparámetros que la componen. Se logra obtener, mediante análisis por matriz de confusión, un desempeño del 100% de la red bajo las condiciones controladas el sistema de clasificación, es decir: color de banda transportadora uniforme y uso de luz día.
自动鱼类分类系统
本文提出了一种模式识别网络架构的设计,以自动分类两种鱼类:罗非鱼和罗非鱼。本文提出了一种基于深度学习的体系结构,通过卷积神经网络(RNC)来确定要使用的数据库和组成它的不同超参数。通过混淆矩阵分析,在分类系统控制的条件下,即均匀的载波带颜色和日光使用,实现了100%的网络性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信