{"title":"High Color Purity and Efficient Green Light-Emitting Diode Using Perovskite Nanocrystals with the Size Overly Exceeding Bohr Exciton Diameter","authors":"Jun-Nan Yang, Tian Chen, Jing Ge, Jing-Jing Wang, Yi-Chen Yin, Yi-Feng Lan, Xue-Chen Ru, Zhen-Yu Ma, Qun Zhang, Hong-Bin Yao*","doi":"10.1021/jacs.1c09948","DOIUrl":null,"url":null,"abstract":"<p >Lead halide perovskite nanocrystals (PNCs) are emerging as promising light emitters to be actively explored for high color purity and efficient light-emitting diodes. However, the most reported lead halide perovskite nanocrystal light-emitting diodes (PNCLEDs) encountered issues of emission line width broadening and operation voltage elevating caused by the quantum confinement effect. Here, we report a new type of PNCLED using large-size CsPbBr<sub>3</sub> PNCs overly exceeding the Bohr exciton diameter, achieving ultranarrow emission line width and rapid brightness rise around the turn-on voltage. We adopt calcium-tributylphosphine oxide hybrid ligand passivation to produce highly dispersed large-size colloidal CsPbBr<sub>3</sub> PNCs with a weak size confinement effect and also high photoluminescence quantum yield (~85%). Utilizing these large-size PNCs as emitters, we manifest that the detrimental effects caused by the quantum confinement effect can be avoided in the device, thereby realizing the highest color purity in green PNCLED, with a narrow full width at half-maximum of 16.4 nm and a high corrected maximum external quantum efficiency of 17.85%. Moreover, the operation half-life time of the large-size PNCLED is 5-fold of that based on smaller-size PNCs. Our work provides a new avenue for improving the performance of PNCLEDs based on unconventional large-size effects.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"143 47","pages":"19928–19937"},"PeriodicalIF":15.6000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.1c09948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 27
Abstract
Lead halide perovskite nanocrystals (PNCs) are emerging as promising light emitters to be actively explored for high color purity and efficient light-emitting diodes. However, the most reported lead halide perovskite nanocrystal light-emitting diodes (PNCLEDs) encountered issues of emission line width broadening and operation voltage elevating caused by the quantum confinement effect. Here, we report a new type of PNCLED using large-size CsPbBr3 PNCs overly exceeding the Bohr exciton diameter, achieving ultranarrow emission line width and rapid brightness rise around the turn-on voltage. We adopt calcium-tributylphosphine oxide hybrid ligand passivation to produce highly dispersed large-size colloidal CsPbBr3 PNCs with a weak size confinement effect and also high photoluminescence quantum yield (~85%). Utilizing these large-size PNCs as emitters, we manifest that the detrimental effects caused by the quantum confinement effect can be avoided in the device, thereby realizing the highest color purity in green PNCLED, with a narrow full width at half-maximum of 16.4 nm and a high corrected maximum external quantum efficiency of 17.85%. Moreover, the operation half-life time of the large-size PNCLED is 5-fold of that based on smaller-size PNCs. Our work provides a new avenue for improving the performance of PNCLEDs based on unconventional large-size effects.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.