{"title":"An Application of Computational Fluid Dynamics to the Hydraulic Analysis of a Water Intake Tower","authors":"M. Wilsnack","doi":"10.14796/jwmm.c494","DOIUrl":null,"url":null,"abstract":"Hydraulic engineers must sometimes perform hydraulic analyses of water control structures to evaluate system behavior under current operational demands and determine if design improvements may be needed. This paper summarizes an example of how computational fluid dynamics can be used for this purpose. A computational fluid dynamics model of a water intake tower that is connected to a pump station though a tunnel was constructed using the commercial software FLOW-3D. The model was used to evaluate head losses through the structure for a desired sustained pumping rate. The computational fluid dynamics modeling results for the intake tower indicate that if the target discharge rate is to be sustained while the upstream delivery canal stage is at its design stage, the head loss across the structure will comprise most of the head loss incurred through the water delivery system. Moreover, an examination of model output revealed certain features of the structure’s hydraulic design that result in excessive losses within the tower and near the entrance of the downstream tunnel.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic engineers must sometimes perform hydraulic analyses of water control structures to evaluate system behavior under current operational demands and determine if design improvements may be needed. This paper summarizes an example of how computational fluid dynamics can be used for this purpose. A computational fluid dynamics model of a water intake tower that is connected to a pump station though a tunnel was constructed using the commercial software FLOW-3D. The model was used to evaluate head losses through the structure for a desired sustained pumping rate. The computational fluid dynamics modeling results for the intake tower indicate that if the target discharge rate is to be sustained while the upstream delivery canal stage is at its design stage, the head loss across the structure will comprise most of the head loss incurred through the water delivery system. Moreover, an examination of model output revealed certain features of the structure’s hydraulic design that result in excessive losses within the tower and near the entrance of the downstream tunnel.