An Application of Computational Fluid Dynamics to the Hydraulic Analysis of a Water Intake Tower

IF 1.2 Q4 WATER RESOURCES
M. Wilsnack
{"title":"An Application of Computational Fluid Dynamics to the Hydraulic Analysis of a Water Intake Tower","authors":"M. Wilsnack","doi":"10.14796/jwmm.c494","DOIUrl":null,"url":null,"abstract":"Hydraulic engineers must sometimes perform hydraulic analyses of water control structures to evaluate system behavior under current operational demands and determine if design improvements may be needed. This paper summarizes an example of how computational fluid dynamics can be used for this purpose. A computational fluid dynamics model of a water intake tower that is connected to a pump station though a tunnel was constructed using the commercial software FLOW-3D. The model was used to evaluate head losses through the structure for a desired sustained pumping rate. The computational fluid dynamics modeling results for the intake tower indicate that if the target discharge rate is to be sustained while the upstream delivery canal stage is at its design stage, the head loss across the structure will comprise most of the head loss incurred through the water delivery system. Moreover, an examination of model output revealed certain features of the structure’s hydraulic design that result in excessive losses within the tower and near the entrance of the downstream tunnel.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulic engineers must sometimes perform hydraulic analyses of water control structures to evaluate system behavior under current operational demands and determine if design improvements may be needed. This paper summarizes an example of how computational fluid dynamics can be used for this purpose. A computational fluid dynamics model of a water intake tower that is connected to a pump station though a tunnel was constructed using the commercial software FLOW-3D. The model was used to evaluate head losses through the structure for a desired sustained pumping rate. The computational fluid dynamics modeling results for the intake tower indicate that if the target discharge rate is to be sustained while the upstream delivery canal stage is at its design stage, the head loss across the structure will comprise most of the head loss incurred through the water delivery system. Moreover, an examination of model output revealed certain features of the structure’s hydraulic design that result in excessive losses within the tower and near the entrance of the downstream tunnel.
计算流体力学在进水塔水力分析中的应用
水利工程师有时必须对水利控制结构进行水力分析,以评估系统在当前运行要求下的行为,并确定是否需要改进设计。本文总结了计算流体动力学如何用于此目的的一个示例。利用商业软件FLOW-3D建立了通过隧道连接泵站的取水塔的计算流体动力学模型。该模型用于评估通过结构获得所需持续泵速的水头损失。进水塔的计算流体力学建模结果表明,如果上游输水渠道处于设计阶段时,要保持目标流量,则整个结构的水头损失将占整个输水系统水头损失的大部分。此外,对模型输出的检查揭示了结构水力设计的某些特征,这些特征导致塔内和下游隧道入口附近的损失过大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信