{"title":"Nonlinear dynamic analysis of soil nail walls considering different modeling approaches","authors":"Mahdi Bayat, A. H. Kosarieh, M. Javanmard","doi":"10.12989/SCS.2021.39.6.737","DOIUrl":null,"url":null,"abstract":"Soil nailing is one of the most common and important techniques to exchange conventional retaining systems for deep excavation. This approach contains a significant saving in cost and time of construction compared to conventional retaining systems. In this paper, an attempt has been made to evaluate the dynamical response of a deep vertical excavation on ground of 8 m height using soil nail wall. It has been tried to investigate the effects of different modeling approaches on the dynamic response of soil-nailed walls by considering the three behavioral methods; Mohr Coulomb (MC), hardening soil (HS) and hardening soil model with Small-Strain stiffness ensued from small strains (HSS). Nonlinear time history analysis has been implemented to compare the displacements under the sinus excitation with 0.5, 1, and 1.5 Hz with PGA= 0.3 g. Different points along the height of the wall are selected and considered. At the last part of this paper, incremental dynamic analysis (IDA) was implemented to the soil nail wall to consider the effect of the different earthquake records on the response of the wall. The IDA curve is also presented for the considered soil nail wall.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"39 1","pages":"737"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.39.6.737","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Soil nailing is one of the most common and important techniques to exchange conventional retaining systems for deep excavation. This approach contains a significant saving in cost and time of construction compared to conventional retaining systems. In this paper, an attempt has been made to evaluate the dynamical response of a deep vertical excavation on ground of 8 m height using soil nail wall. It has been tried to investigate the effects of different modeling approaches on the dynamic response of soil-nailed walls by considering the three behavioral methods; Mohr Coulomb (MC), hardening soil (HS) and hardening soil model with Small-Strain stiffness ensued from small strains (HSS). Nonlinear time history analysis has been implemented to compare the displacements under the sinus excitation with 0.5, 1, and 1.5 Hz with PGA= 0.3 g. Different points along the height of the wall are selected and considered. At the last part of this paper, incremental dynamic analysis (IDA) was implemented to the soil nail wall to consider the effect of the different earthquake records on the response of the wall. The IDA curve is also presented for the considered soil nail wall.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.