Plastic analysis of steel arches and framed structures with various cross sections

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Jéssica Lorrany e Silva, Lidiane R. R. M. Deus, Í. Lemes, R. Silveira
{"title":"Plastic analysis of steel arches and framed structures with various cross sections","authors":"Jéssica Lorrany e Silva, Lidiane R. R. M. Deus, Í. Lemes, R. Silveira","doi":"10.12989/SCS.2021.38.3.257","DOIUrl":null,"url":null,"abstract":"This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"257-270"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.3.257","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.
不同截面钢拱和框架结构的塑性分析
本文根据欧拉-伯努利理论,提出了一种基于位移的数值方法来模拟钢结构的非线性行为。值得强调的是,考虑到大位移和大旋转以及材料的非弹性特性,采用共旋转有限元公式。提出的数值计算方法考虑了集中在有限元节点的塑性,并采用应变协调法(SCM)对钢的非线性行为进行了模拟,其中明确使用了材料的本构关系。在确定截面承载力时,也应用了SCM。此外,目前的数值方法并不局限于特定的结构构件截面类型,通过二维离散化生成的钢截面子区域明确引入了残余应力模型。最后给出了与文献一致且处理时间短的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信