Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
A. Fattahi, B. Safaei, Zhao-ye Qin, F. Chu
{"title":"Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites","authors":"A. Fattahi, B. Safaei, Zhao-ye Qin, F. Chu","doi":"10.12989/SCS.2021.38.2.177","DOIUrl":null,"url":null,"abstract":"The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young' s modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"177-187"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.2.177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 27

Abstract

The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young' s modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.
高密度聚乙烯-多壁碳纳米管纳米复合材料弹性性能实验研究
实验研究了纳米颗粒体积分数对聚合物基纳米复合材料弹性性能的影响,并将所得结果与现有的各种理论模型进行了比较。该纳米复合材料由高密度聚乙烯(HDPE)为聚合物基体和0、0.5、1和1.5 wt.%的多壁碳纳米管(MWCNTs)通过双螺杆挤出和注射成型技术制备而成。按照ASTM-D638标准,在注射机中成型纳米复合材料样品。因此,除了对样品进行形态学研究外,还对每个样品进行了室温下的拉伸试验,并从原始应变试验结果中提取了应力-应变图、弹性模量、泊松比和体积单元应变能。拉伸试验结果表明,在HDPE-MWCNT纳米复合材料中,1 wt.%的纳米颗粒具有最佳的增强性能。纳米颗粒在1 wt.%以上团聚,降低了杨氏模量、屈服应力、断裂应力和断裂能,增加了泊松比和破坏应变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信