Periodic solution of a bioeconomic fishery model by coincidence degree theory

IF 1.1 4区 数学 Q1 MATHEMATICS
S. Srivastava, S. Padhi, A. Domoshnitsky
{"title":"Periodic solution of a bioeconomic fishery model by coincidence degree theory","authors":"S. Srivastava, S. Padhi, A. Domoshnitsky","doi":"10.14232/ejqtde.2023.1.29","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mi>K</mml:mi> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mi>E</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>D</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /> </mml:mrow> </mml:math> where the functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>α<!-- α --></mml:mi></mml:math> are continuous positive <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>T</mml:mi></mml:math>-periodic functions. This is the model of a coastal fishery represented as a single site with $n(t)$ is the fish stock biomass, and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> is the fishing effort. Examples are given to strengthen our results.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.29","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics { d n d t = n ( r ( t ) ( 1 n K ) q ( t ) E n + D ) , d E d t = E ( A ( t ) q ( t ) α ( t ) n n + D q 2 ( t ) α ( t ) n 2 E ( n + D ) 2 c ( t ) ) , where the functions r , q , A , c and α are continuous positive T-periodic functions. This is the model of a coastal fishery represented as a single site with $n(t)$ is the fish stock biomass, and n(t) is the fishing effort. Examples are given to strengthen our results.
用重合度理论求解生物经济渔业模型的周期解
在这篇文章中,我们用确定的方法研究了在燃烧动力学中遵循生物经济模型的积极本质解决方案− n K ) − q ( t ) E n + D ) ,d E d t = E ( A ( t ) q ( t ) α ( t) n n + D − q 2 ( t ) α ( t )n 2 E ( n + D ) 2 − c ( t ) ) , 那里的functions r,q, A, c和α是挑战积极T-periodic functions。这是一个价格均值的模型,代表着美国唯一一个价值$n的网站,而t代表鱼的海洋。Examples会得到我们的激励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信