{"title":"Periodic solution of a bioeconomic fishery model by coincidence degree theory","authors":"S. Srivastava, S. Padhi, A. Domoshnitsky","doi":"10.14232/ejqtde.2023.1.29","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mi>K</mml:mi> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mfrac> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mi>E</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>D</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /> </mml:mrow> </mml:math> where the functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>α<!-- α --></mml:mi></mml:math> are continuous positive <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>T</mml:mi></mml:math>-periodic functions. This is the model of a coastal fishery represented as a single site with $n(t)$ is the fish stock biomass, and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> is the fishing effort. Examples are given to strengthen our results.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.29","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics {dndt=n(r(t)(1−nK)−q(t)En+D),dEdt=E(A(t)q(t)α(t)nn+D−q2(t)α(t)n2E(n+D)2−c(t)), where the functions r,q,A,c and α are continuous positive T-periodic functions. This is the model of a coastal fishery represented as a single site with $n(t)$ is the fish stock biomass, and n(t) is the fishing effort. Examples are given to strengthen our results.
在这篇文章中,我们用确定的方法研究了在燃烧动力学中遵循生物经济模型的积极本质解决方案− n K ) − q ( t ) E n + D ) ,d E d t = E ( A ( t ) q ( t ) α ( t) n n + D − q 2 ( t ) α ( t )n 2 E ( n + D ) 2 − c ( t ) ) , 那里的functions r,q, A, c和α是挑战积极T-periodic functions。这是一个价格均值的模型,代表着美国唯一一个价值$n的网站,而t代表鱼的海洋。Examples会得到我们的激励。
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.