Bifurcations and Turing patterns in a diffusive Gierer–Meinhardt model

IF 1.1 4区 数学 Q1 MATHEMATICS
Yong Wang, Mengping Guo, Weihua Jiang
{"title":"Bifurcations and Turing patterns in a diffusive Gierer–Meinhardt model","authors":"Yong Wang, Mengping Guo, Weihua Jiang","doi":"10.14232/ejqtde.2023.1.27","DOIUrl":null,"url":null,"abstract":"In this paper, the Hopf bifurcations and Turing bifurcations of the Gierer–Meinhardt activator-inhibitor model are studied. The very interesting and complex spatially periodic solutions and patterns induced by bifurcations are analyzed from both theoretical and numerical aspects respectively. Firstly, the conditions for the existence of Hopf bifurcation and Turing bifurcation are established in turn. Then, the Turing instability region caused by diffusion is obtained. In addition, to uncover the diffusion mechanics of Turing patterns, the dynamic behaviors are studied near the Turing bifurcation by using weakly nonlinear analysis techniques, and the type of spatial pattern was predicted by the amplitude equation. And our results show that the spatial patterns in the Turing instability region change from the spot, spot-stripe to stripe in order. Finally, the results of the analysis are verified by numerical simulations.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.27","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the Hopf bifurcations and Turing bifurcations of the Gierer–Meinhardt activator-inhibitor model are studied. The very interesting and complex spatially periodic solutions and patterns induced by bifurcations are analyzed from both theoretical and numerical aspects respectively. Firstly, the conditions for the existence of Hopf bifurcation and Turing bifurcation are established in turn. Then, the Turing instability region caused by diffusion is obtained. In addition, to uncover the diffusion mechanics of Turing patterns, the dynamic behaviors are studied near the Turing bifurcation by using weakly nonlinear analysis techniques, and the type of spatial pattern was predicted by the amplitude equation. And our results show that the spatial patterns in the Turing instability region change from the spot, spot-stripe to stripe in order. Finally, the results of the analysis are verified by numerical simulations.
扩散Gierer-Meinhardt模型的分岔和图灵模式
本文研究了Gierer-Meinhardt活化剂-抑制剂模型的Hopf分岔和Turing分岔。分别从理论和数值两个方面分析了由分岔引起的非常有趣和复杂的空间周期解和模式。首先,依次建立了Hopf分岔和Turing分岔存在的条件;然后,得到了扩散引起的图灵不稳定区域。此外,为了揭示图灵模式的扩散机制,利用弱非线性分析技术研究了图灵分支附近的动态行为,并利用振幅方程预测了空间模式的类型。结果表明,图灵不稳定区的空间格局从点、点-条纹到条纹依次变化。最后,通过数值模拟验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信