Qualitative analysis of a mechanical system of coupled nonlinear oscillators

IF 1.1 4区 数学 Q1 MATHEMATICS
G. Moroşanu, C. Vladimirescu
{"title":"Qualitative analysis of a mechanical system of coupled nonlinear oscillators","authors":"G. Moroşanu, C. Vladimirescu","doi":"10.14232/ejqtde.2023.1.16","DOIUrl":null,"url":null,"abstract":"In this paper we investigate nonlinear systems of second order ODEs describing the dynamics of two coupled nonlinear oscillators of a mechanical system. We obtain, under certain assumptions, some stability results for the null solution. Also, we show that in the presence of a time-dependent external force, every solution starting from sufficiently small initial data and its derivative are bounded or go to zero as the time tends to + ∞ , provided that suitable conditions are satisfied. Our theoretical results are illustrated with numerical simulations.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2023.1.16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate nonlinear systems of second order ODEs describing the dynamics of two coupled nonlinear oscillators of a mechanical system. We obtain, under certain assumptions, some stability results for the null solution. Also, we show that in the presence of a time-dependent external force, every solution starting from sufficiently small initial data and its derivative are bounded or go to zero as the time tends to + ∞ , provided that suitable conditions are satisfied. Our theoretical results are illustrated with numerical simulations.
耦合非线性振子机械系统的定性分析
本文研究了描述机械系统中两个耦合非线性振子动力学的二阶ode非线性系统。在一定的假设条件下,我们得到了零解的一些稳定性结果。此外,我们表明,在时间依赖的外力存在下,只要满足适当的条件,每个从足够小的初始数据开始的解及其导数都是有界的或趋于零,因为时间趋于+∞。我们的理论结果用数值模拟加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信