On the existence of periodic solutions to second order Hamiltonian systems

IF 1.1 4区 数学 Q1 MATHEMATICS
Xiao-Feng Ke, Jia‐Feng Liao
{"title":"On the existence of periodic solutions to second order Hamiltonian systems","authors":"Xiao-Feng Ke, Jia‐Feng Liao","doi":"10.14232/ejqtde.2022.1.36","DOIUrl":null,"url":null,"abstract":"In this paper, the existence of periodic solutions to the second order Hamiltonian systems is investigated. By introducing a new growth condition which generalizes the Ambrosetti–Rabinowitz condition, we prove a existence result of nontrivial $T$-periodic solution via the variational methods. Our result is new because it can deal with not only the superquadratic case, but also the anisotropic case which allows the potential to be superquadratic growth in only one direction and asymptotically quadratic growth in other directions.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.36","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the existence of periodic solutions to the second order Hamiltonian systems is investigated. By introducing a new growth condition which generalizes the Ambrosetti–Rabinowitz condition, we prove a existence result of nontrivial $T$-periodic solution via the variational methods. Our result is new because it can deal with not only the superquadratic case, but also the anisotropic case which allows the potential to be superquadratic growth in only one direction and asymptotically quadratic growth in other directions.
二阶哈密顿系统周期解的存在性
本文研究了二阶哈密顿系统周期解的存在性。通过引入一个新的增长条件,推广了Ambrosetti-Rabinowitz条件,用变分方法证明了非平凡T -周期解的存在性。我们的结果是新的,因为它不仅可以处理超二次情况,而且还可以处理各向异性情况,这种情况允许势能只在一个方向上是超二次增长,而在其他方向上是渐近二次增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信