{"title":"Oscillation of half-linear differential equations with mixed type of argument","authors":"J. Džurina, B. Baculíková","doi":"10.14232/ejqtde.2022.1.10","DOIUrl":null,"url":null,"abstract":"<jats:p>This paper is devoted to the study of the oscillatory behavior of half-linear functional differential equations with deviating argument of the form <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mtable displaystyle=\"true\"> <mml:mlabeledtr> <mml:mtd id=\"mjx-eqn-Eabs\"> <mml:mrow> <mml:mtext>(</mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>E</mml:mi> </mml:mrow> <mml:mtext>)</mml:mtext> </mml:mrow> </mml:mtd> <mml:mtd> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>.</mml:mo> </mml:mtd> </mml:mlabeledtr> </mml:mtable> </mml:math>. We introduce new technique based on monotonic properties of nonoscillatory solutions to offer new oscillatory criteria for <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow class=\"MathJax_ref\" href=\"#mjx-eqn-Eabs\"> <mml:mrow> <mml:mtext>(</mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>E</mml:mi> </mml:mrow> <mml:mtext>)</mml:mtext> </mml:mrow> </mml:mrow> </mml:math>. We will show that presented results essentially improve existing ones even for linear differential equations.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
This paper is devoted to the study of the oscillatory behavior of half-linear functional differential equations with deviating argument of the form (E)(r(t)(y′(t))α)′=p(t)yα(τ(t)).. We introduce new technique based on monotonic properties of nonoscillatory solutions to offer new oscillatory criteria for (E). We will show that presented results essentially improve existing ones even for linear differential equations.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.