Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics

IF 1.1 4区 数学 Q1 MATHEMATICS
R. Benterki, Jeidy Jimenez, J. Llibre
{"title":"Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics","authors":"R. Benterki, Jeidy Jimenez, J. Llibre","doi":"10.14232/ejqtde.2021.1.69","DOIUrl":null,"url":null,"abstract":"Due to their applications to many physical phenomena during these last decades the interest for studying the discontinuous piecewise differential systems has increased strongly. The limit cycles play a main role in the study of any planar differential system, but to determine the maximum number of limits cycles that a class of planar differential systems can have is one of the main problems in the qualitative theory of the planar differential systems. Thus in general to provide a sharp upper bound for the number of crossing limit cycles that a given class of piecewise linear differential system can have is a very difficult problem. In this paper we characterize the existence and the number of limit cycles for the piecewise linear differential systems formed by linear Hamiltonian systems without equilibria and separated by a reducible cubic curve, formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola. Hence we have solved the extended 16th Hilbert problem to this class of piecewise differential systems.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2021.1.69","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Due to their applications to many physical phenomena during these last decades the interest for studying the discontinuous piecewise differential systems has increased strongly. The limit cycles play a main role in the study of any planar differential system, but to determine the maximum number of limits cycles that a class of planar differential systems can have is one of the main problems in the qualitative theory of the planar differential systems. Thus in general to provide a sharp upper bound for the number of crossing limit cycles that a given class of piecewise linear differential system can have is a very difficult problem. In this paper we characterize the existence and the number of limit cycles for the piecewise linear differential systems formed by linear Hamiltonian systems without equilibria and separated by a reducible cubic curve, formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola. Hence we have solved the extended 16th Hilbert problem to this class of piecewise differential systems.
平面不连续分段线性哈密顿系统的极限环
由于在过去几十年中它们在许多物理现象中的应用,研究不连续分段微分系统的兴趣日益浓厚。极限环在任何平面微分系统的研究中都起着重要的作用,但确定一类平面微分系统的最大极限环数是平面微分系统定性理论中的主要问题之一。因此,一般来说,给定一类分段线性微分系统的交叉极限环数的明确上界是一个非常困难的问题。本文刻画了由无平衡点的线性哈密顿系统组成的分段线性微分系统的极限环的存在性和极限环的数目,这些系统由椭圆和直线或抛物线和与抛物线顶点相切的直线组成,并由可约三次曲线分隔。由此,我们解决了这类分段微分系统的扩展16阶希尔伯特问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信