{"title":"Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics","authors":"R. Benterki, Jeidy Jimenez, J. Llibre","doi":"10.14232/ejqtde.2021.1.69","DOIUrl":null,"url":null,"abstract":"Due to their applications to many physical phenomena during these last decades the interest for studying the discontinuous piecewise differential systems has increased strongly. The limit cycles play a main role in the study of any planar differential system, but to determine the maximum number of limits cycles that a class of planar differential systems can have is one of the main problems in the qualitative theory of the planar differential systems. Thus in general to provide a sharp upper bound for the number of crossing limit cycles that a given class of piecewise linear differential system can have is a very difficult problem. In this paper we characterize the existence and the number of limit cycles for the piecewise linear differential systems formed by linear Hamiltonian systems without equilibria and separated by a reducible cubic curve, formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola. Hence we have solved the extended 16th Hilbert problem to this class of piecewise differential systems.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2021.1.69","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Due to their applications to many physical phenomena during these last decades the interest for studying the discontinuous piecewise differential systems has increased strongly. The limit cycles play a main role in the study of any planar differential system, but to determine the maximum number of limits cycles that a class of planar differential systems can have is one of the main problems in the qualitative theory of the planar differential systems. Thus in general to provide a sharp upper bound for the number of crossing limit cycles that a given class of piecewise linear differential system can have is a very difficult problem. In this paper we characterize the existence and the number of limit cycles for the piecewise linear differential systems formed by linear Hamiltonian systems without equilibria and separated by a reducible cubic curve, formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola. Hence we have solved the extended 16th Hilbert problem to this class of piecewise differential systems.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.