{"title":"3D incompressible flows with small viscosity around distant obstacles","authors":"L. Viana","doi":"10.14232/EJQTDE.2021.1.31","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the behavior of three-dimensional incompressible flows, with small viscosities ν > 0, in the exterior of material obstacles ΩR = Ω0 + (R, 0, 0), where Ω0 belongs to a class of smooth bounded domains and R > 0 is sufficiently large. Applying techniques developed by Kato, we prove an explicit energy estimate which, in particular, indicates the limiting flow, when both ν → 0 and R → ∞, as that one governed by the Euler equations in the whole space. According to this approach, it is natural to contrast our main result to that one already known in the literature for families of viscous flows in expanding domains.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-21"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2021.1.31","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we analyze the behavior of three-dimensional incompressible flows, with small viscosities ν > 0, in the exterior of material obstacles ΩR = Ω0 + (R, 0, 0), where Ω0 belongs to a class of smooth bounded domains and R > 0 is sufficiently large. Applying techniques developed by Kato, we prove an explicit energy estimate which, in particular, indicates the limiting flow, when both ν → 0 and R → ∞, as that one governed by the Euler equations in the whole space. According to this approach, it is natural to contrast our main result to that one already known in the literature for families of viscous flows in expanding domains.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.