3D incompressible flows with small viscosity around distant obstacles

IF 1.1 4区 数学 Q1 MATHEMATICS
L. Viana
{"title":"3D incompressible flows with small viscosity around distant obstacles","authors":"L. Viana","doi":"10.14232/EJQTDE.2021.1.31","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the behavior of three-dimensional incompressible flows, with small viscosities ν > 0, in the exterior of material obstacles ΩR = Ω0 + (R, 0, 0), where Ω0 belongs to a class of smooth bounded domains and R > 0 is sufficiently large. Applying techniques developed by Kato, we prove an explicit energy estimate which, in particular, indicates the limiting flow, when both ν → 0 and R → ∞, as that one governed by the Euler equations in the whole space. According to this approach, it is natural to contrast our main result to that one already known in the literature for families of viscous flows in expanding domains.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-21"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2021.1.31","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze the behavior of three-dimensional incompressible flows, with small viscosities ν > 0, in the exterior of material obstacles ΩR = Ω0 + (R, 0, 0), where Ω0 belongs to a class of smooth bounded domains and R > 0 is sufficiently large. Applying techniques developed by Kato, we prove an explicit energy estimate which, in particular, indicates the limiting flow, when both ν → 0 and R → ∞, as that one governed by the Euler equations in the whole space. According to this approach, it is natural to contrast our main result to that one already known in the literature for families of viscous flows in expanding domains.
三维不可压缩流与小粘度围绕远处障碍物
本文分析了在物质障碍物ΩR = Ω0 + (R, 0,0)外部具有小粘度ν > 0的三维不可压缩流的行为,其中Ω0属于光滑有界区域,且R >足够大。应用Kato所开发的技术,我们证明了一个显式的能量估计,特别是当ν→0和R→∞时,该估计表明整个空间中的极限流是由欧拉方程控制的。根据这种方法,很自然地将我们的主要结果与文献中已知的扩展域中粘性流动族的结果进行对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信