A. Alejo, H. Ahmed, A. Green, S. R. Mirfayzi, M. Borghesi, S. Kar
{"title":"Recent advances in laser-driven neutron sources","authors":"A. Alejo, H. Ahmed, A. Green, S. R. Mirfayzi, M. Borghesi, S. Kar","doi":"10.1393/NCC/I2015-15188-8","DOIUrl":null,"url":null,"abstract":"— Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.","PeriodicalId":81495,"journal":{"name":"Il Nuovo cimento della Societa italiana di fisica. C","volume":"38 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Il Nuovo cimento della Societa italiana di fisica. C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1393/NCC/I2015-15188-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
— Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.