Non-perturbative QCD by lattice simulations

M. D’Elia
{"title":"Non-perturbative QCD by lattice simulations","authors":"M. D’Elia","doi":"10.1393/ncc/i2011-10752-x","DOIUrl":null,"url":null,"abstract":"Nowadays, Quantum ChromoDynamics is accepted as the quantum field theory which describes strong interactions. Asymptotic freedom guarantees the applicability of a perturbative expansion at energies much larger than ΛQCD ∼ 200 MeV. At low energies, instead, the theory is non-perturbative: the only known computational scheme of the theory in this regime was proposed by K. G. Wilson more than 30 years ago [1] and is based on a Monte Carlo stochastic computation of the path integral of the theory, regularized in a gauge invariant on an Euclidean space-time lattice. Let us consider the partition function of QCD at finite temperature T on a finite spatial volume V . That can be given a regularized path integral representation as follows:","PeriodicalId":81495,"journal":{"name":"Il Nuovo cimento della Societa italiana di fisica. C","volume":"33 1","pages":"123-128"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Il Nuovo cimento della Societa italiana di fisica. C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1393/ncc/i2011-10752-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, Quantum ChromoDynamics is accepted as the quantum field theory which describes strong interactions. Asymptotic freedom guarantees the applicability of a perturbative expansion at energies much larger than ΛQCD ∼ 200 MeV. At low energies, instead, the theory is non-perturbative: the only known computational scheme of the theory in this regime was proposed by K. G. Wilson more than 30 years ago [1] and is based on a Monte Carlo stochastic computation of the path integral of the theory, regularized in a gauge invariant on an Euclidean space-time lattice. Let us consider the partition function of QCD at finite temperature T on a finite spatial volume V . That can be given a regularized path integral representation as follows:
晶格模拟的非微扰QCD
量子色动力学是目前公认的描述强相互作用的量子场论。渐近自由保证了微扰展开在能量远大于ΛQCD ~ 200mev时的适用性。相反,在低能量下,该理论是非摄动的:该理论在该状态下唯一已知的计算方案是由k.g. Wilson在30多年前提出的b[1],该方案基于该理论的路径积分的蒙特卡罗随机计算,在欧几里得时空晶格上正则化为规范不变量。让我们考虑有限温度T下有限空间体积V上QCD的配分函数。其正则化路径积分表示如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信