{"title":"Periodic stationary solutions of the Nagumo lattice differential equation: existence regions and their number","authors":"V. Svígler","doi":"10.14232/EJQTDE.2021.1.23","DOIUrl":null,"url":null,"abstract":"The Nagumo lattice differential equation admits stationary solutions with arbitrary spatial period for sufficiently small diffusion rate. The continuation from the stationary solutions of the decoupled system (a system of isolated nodes) is used to determine their types; the solutions are labelled by words from a three-letter alphabet. Each stationary solution type can be assigned a parameter region in which the solution can be uniquely identified. Numerous symmetries present in the equation cause some of the regions to have identical or similar shape. With the help of combinatorial enumeration, we derive formulas determining the number of qualitatively different existence regions. We also discuss possible extensions to other systems with more general nonlinear terms and/or spatial structure.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-31"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2021.1.23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
The Nagumo lattice differential equation admits stationary solutions with arbitrary spatial period for sufficiently small diffusion rate. The continuation from the stationary solutions of the decoupled system (a system of isolated nodes) is used to determine their types; the solutions are labelled by words from a three-letter alphabet. Each stationary solution type can be assigned a parameter region in which the solution can be uniquely identified. Numerous symmetries present in the equation cause some of the regions to have identical or similar shape. With the help of combinatorial enumeration, we derive formulas determining the number of qualitatively different existence regions. We also discuss possible extensions to other systems with more general nonlinear terms and/or spatial structure.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.