Information and Prediction Criteria in Selecting the Forecasting Model

M. Piłatowska
{"title":"Information and Prediction Criteria in Selecting the Forecasting Model","authors":"M. Piłatowska","doi":"10.12775/DEM.2011.002","DOIUrl":null,"url":null,"abstract":"The purpose of the paper it to compare the performance of both information and prediction criteria in selecting the forecasting model on empirical data for Poland when the data generating model is unknown. The attention will especially focus on the evolution of information criteria (AIC, BIC) and accumulated prediction error (APE) for increasing sample sizes and rolling windows of different size, and also the impact of initial sample and rolling window sizes on the selection of forecasting model. The best forecasting model will be chosen from the set including three models: autoregressive model, AR (with or without a deterministic trend), ARIMA model and random walk (RW) model.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"11 1","pages":"21-40"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2011.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The purpose of the paper it to compare the performance of both information and prediction criteria in selecting the forecasting model on empirical data for Poland when the data generating model is unknown. The attention will especially focus on the evolution of information criteria (AIC, BIC) and accumulated prediction error (APE) for increasing sample sizes and rolling windows of different size, and also the impact of initial sample and rolling window sizes on the selection of forecasting model. The best forecasting model will be chosen from the set including three models: autoregressive model, AR (with or without a deterministic trend), ARIMA model and random walk (RW) model.
选择预测模型的信息和预测标准
本文的目的是在数据生成模型未知的情况下,比较信息标准和预测标准在选择波兰经验数据预测模型时的性能。本文将特别关注不同样本量和滚动窗增大时信息准则(AIC、BIC)和累积预测误差(APE)的演变,以及初始样本量和滚动窗大小对预测模型选择的影响。从自回归模型、AR(有或没有确定性趋势)、ARIMA模型和随机游走(RW)模型三种模型中选择最佳预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信