Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification

Roman Huptas
{"title":"Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification","authors":"Roman Huptas","doi":"10.12775/DEM.2009.013","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to outline the typical characteristics of the ultra-high-frequency financial data and to present estimation methods of intraday seasonality of trading activity. Ultra-high-frequency financial data (transactions data or tick-by-tick data) is defined to be a full record of transactions and their associated characteristics. We consider two nonparametric estimation methods: cubic splines and a Nadaraya-Watson kernel estimator of regression. Both approaches are compared empirically and applied to financial data of stocks traded at the Warsaw Stock Exchange.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"9 1","pages":"129-138"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2009.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of this paper is to outline the typical characteristics of the ultra-high-frequency financial data and to present estimation methods of intraday seasonality of trading activity. Ultra-high-frequency financial data (transactions data or tick-by-tick data) is defined to be a full record of transactions and their associated characteristics. We consider two nonparametric estimation methods: cubic splines and a Nadaraya-Watson kernel estimator of regression. Both approaches are compared empirically and applied to financial data of stocks traded at the Warsaw Stock Exchange.
超高频财务数据分析中的日内季节性:模型及其实证验证
本文的目的是概述超高频金融数据的典型特征,并提出交易活动盘中季节性的估计方法。超高频金融数据(交易数据或逐点数据)被定义为交易及其相关特征的完整记录。我们考虑了两种非参数估计方法:三次样条和回归的Nadaraya-Watson核估计。这两种方法进行了实证比较,并应用于在华沙证券交易所交易的股票的财务数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信