Bayesian Analysis of the Box-Cox Transformation in Stochastic Volatility Models

Anna Pajor
{"title":"Bayesian Analysis of the Box-Cox Transformation in Stochastic Volatility Models","authors":"Anna Pajor","doi":"10.12775/DEM.2009.008","DOIUrl":null,"url":null,"abstract":"In the paper, we consider the Box-Cox transformation of financial time series in Stochastic Volatility models. Bayesian approach is applied to make inference about the Box-Cox transformation parameter (l). Using daily data (quotations of stock indices), we show that in the Stochastic Volatility models with fat tails and correlated errors (FCSV), the posterior distribution of parameter l strongly depends on the prior assumption about this parameter. In the majority of cases the values of l close to 0 are more probable a posteriori than the ones close to 1.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"9 1","pages":"81-90"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2009.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the paper, we consider the Box-Cox transformation of financial time series in Stochastic Volatility models. Bayesian approach is applied to make inference about the Box-Cox transformation parameter (l). Using daily data (quotations of stock indices), we show that in the Stochastic Volatility models with fat tails and correlated errors (FCSV), the posterior distribution of parameter l strongly depends on the prior assumption about this parameter. In the majority of cases the values of l close to 0 are more probable a posteriori than the ones close to 1.
随机波动模型中Box-Cox变换的贝叶斯分析
本文考虑随机波动模型中金融时间序列的Box-Cox变换。应用贝叶斯方法对Box-Cox变换参数(l)进行推理。使用日常数据(股票指数报价),我们表明,在具有肥尾和相关误差(FCSV)的随机波动率模型中,参数l的后验分布强烈依赖于该参数的先验假设。在大多数情况下,l接近0的值比接近1的值在后验概率更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信