Greedy Matching in Bipartite Random Graphs

Q1 Mathematics
N. Arnosti
{"title":"Greedy Matching in Bipartite Random Graphs","authors":"N. Arnosti","doi":"10.1287/stsy.2021.0082","DOIUrl":null,"url":null,"abstract":"This paper studies the performance of greedy matching algorithms on bipartite graphs [Formula: see text]. We focus primarily on three classical algorithms: [Formula: see text], which sequentially selects random edges from [Formula: see text]; [Formula: see text], which sequentially matches random vertices in [Formula: see text] to random neighbors; and [Formula: see text], which generates a random priority order over vertices in [Formula: see text] and then sequentially matches random vertices in [Formula: see text] to their highest-priority remaining neighbor. Prior work has focused on identifying the worst-case approximation ratio for each algorithm. This guarantee is highest for [Formula: see text] and lowest for [Formula: see text]. Our work instead studies the average performance of these algorithms when the edge set [Formula: see text] is random. Our first result compares [Formula: see text] and [Formula: see text] and shows that on average, [Formula: see text] produces more matches. This result holds for finite graphs (in contrast to previous asymptotic results) and also applies to “many to one” matching in which each vertex in [Formula: see text] can match with multiple vertices in [Formula: see text]. Our second result compares [Formula: see text] and [Formula: see text] and shows that the better worst-case guarantee of [Formula: see text] does not translate into better average performance. In “one to one” settings where each vertex in [Formula: see text] can match with only one vertex in [Formula: see text], the algorithms result in the same number of matches. When each vertex in [Formula: see text] can match with two vertices in [Formula: see text] produces more matches than [Formula: see text].","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2021.0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

This paper studies the performance of greedy matching algorithms on bipartite graphs [Formula: see text]. We focus primarily on three classical algorithms: [Formula: see text], which sequentially selects random edges from [Formula: see text]; [Formula: see text], which sequentially matches random vertices in [Formula: see text] to random neighbors; and [Formula: see text], which generates a random priority order over vertices in [Formula: see text] and then sequentially matches random vertices in [Formula: see text] to their highest-priority remaining neighbor. Prior work has focused on identifying the worst-case approximation ratio for each algorithm. This guarantee is highest for [Formula: see text] and lowest for [Formula: see text]. Our work instead studies the average performance of these algorithms when the edge set [Formula: see text] is random. Our first result compares [Formula: see text] and [Formula: see text] and shows that on average, [Formula: see text] produces more matches. This result holds for finite graphs (in contrast to previous asymptotic results) and also applies to “many to one” matching in which each vertex in [Formula: see text] can match with multiple vertices in [Formula: see text]. Our second result compares [Formula: see text] and [Formula: see text] and shows that the better worst-case guarantee of [Formula: see text] does not translate into better average performance. In “one to one” settings where each vertex in [Formula: see text] can match with only one vertex in [Formula: see text], the algorithms result in the same number of matches. When each vertex in [Formula: see text] can match with two vertices in [Formula: see text] produces more matches than [Formula: see text].
二部随机图中的贪婪匹配
本文研究了贪心匹配算法在二部图上的性能[公式:见文]。我们主要关注三种经典算法:[公式:见文],它依次从[公式:见文]中选择随机边缘;[公式:见文],将[公式:见文]中的随机顶点顺序匹配到随机邻居;和[公式:见文],它在[公式:见文]的顶点上生成一个随机的优先顺序,然后顺序地将[公式:见文]中的随机顶点与其剩余的最高优先级邻居匹配。先前的工作集中在确定每种算法的最坏情况近似比。这种保证对于[公式:见正文]是最高的,对于[公式:见正文]是最低的。我们的工作是研究当边缘集[公式:见文本]是随机时这些算法的平均性能。我们的第一个结果比较了[Formula: see text]和[Formula: see text],结果显示平均而言,[Formula: see text]产生了更多的匹配。这个结果适用于有限图(与之前的渐近结果相反),也适用于“多对一”匹配,其中[公式:见文本]中的每个顶点可以与[公式:见文本]中的多个顶点匹配。我们的第二个结果比较了[Formula: see text]和[Formula: see text],结果表明[Formula: see text]更好的最坏情况保证并不能转化为更好的平均性能。在“一对一”设置中,[公式:见文本]中的每个顶点只能与[公式:见文本]中的一个顶点匹配,算法会产生相同数量的匹配。当[Formula: see text]中的每个顶点都能与[Formula: see text]中的两个顶点匹配时,产生的匹配数比[Formula: see text]多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信