Universality of Power-of-d Load Balancing in Many-Server Systems

Q1 Mathematics
Debankur Mukherjee, S. Borst, J. V. van Leeuwaarden, P. Whiting
{"title":"Universality of Power-of-d Load Balancing in Many-Server Systems","authors":"Debankur Mukherjee, S. Borst, J. V. van Leeuwaarden, P. Whiting","doi":"10.1287/stsy.2018.0016","DOIUrl":null,"url":null,"abstract":"We consider a system of $N$ parallel single-server queues with unit exponential service rates and a single dispatcher where tasks arrive as a Poisson process of rate $\\lambda(N)$. When a task arrives, the dispatcher assigns it to a server with the shortest queue among $d(N)$ randomly selected servers ($1 \\leq d(N) \\leq N$). This load balancing strategy is referred to as a JSQ($d(N)$) scheme, marking that it subsumes the celebrated Join-the-Shortest Queue (JSQ) policy as a crucial special case for $d(N) = N$. \nWe construct a stochastic coupling to bound the difference in the queue length processes between the JSQ policy and a scheme with an arbitrary value of $d(N)$. We use the coupling to derive the fluid limit in the regime where $\\lambda(N) / N \\to \\lambda 0$ as $N \\to \\infty$ with $d(N)/(\\sqrt{N} \\log (N))\\to\\infty$ corresponds to that for the JSQ policy. These results indicate that the optimality of the JSQ policy can be preserved at the fluid-level and diffusion-level while reducing the overhead by nearly a factor O($N$) and O($\\sqrt{N}/\\log(N)$), respectively.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2018.0016","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2018.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 78

Abstract

We consider a system of $N$ parallel single-server queues with unit exponential service rates and a single dispatcher where tasks arrive as a Poisson process of rate $\lambda(N)$. When a task arrives, the dispatcher assigns it to a server with the shortest queue among $d(N)$ randomly selected servers ($1 \leq d(N) \leq N$). This load balancing strategy is referred to as a JSQ($d(N)$) scheme, marking that it subsumes the celebrated Join-the-Shortest Queue (JSQ) policy as a crucial special case for $d(N) = N$. We construct a stochastic coupling to bound the difference in the queue length processes between the JSQ policy and a scheme with an arbitrary value of $d(N)$. We use the coupling to derive the fluid limit in the regime where $\lambda(N) / N \to \lambda 0$ as $N \to \infty$ with $d(N)/(\sqrt{N} \log (N))\to\infty$ corresponds to that for the JSQ policy. These results indicate that the optimality of the JSQ policy can be preserved at the fluid-level and diffusion-level while reducing the overhead by nearly a factor O($N$) and O($\sqrt{N}/\log(N)$), respectively.
多服务器系统中功率负载均衡的通用性
我们考虑了一个$N$并行单服务器队列系统,该系统具有单位指数服务速率和单个调度器,其中任务到达速率为$\lambda(N)$的泊松过程。当任务到达时,调度程序将其分配给$d(N)$随机选择的服务器($1 \leq d(N) \leq N$)中队列最短的服务器。这种负载平衡策略被称为JSQ($d(N)$)方案,这表明它将著名的最短队列加入(JSQ)策略作为$d(N) = N$的一个关键特例纳入其中。我们构造了一个随机耦合来约束JSQ策略和一个任意值为$d(N)$的方案之间的队列长度进程的差异。我们使用耦合来推导出$\lambda(N) / N \to \lambda 0$为$N \to \infty$的状态下的流体极限,$d(N)/(\sqrt{N} \log (N))\to\infty$对应于JSQ策略的流体极限。这些结果表明,JSQ策略可以在流体级和扩散级保持最优性,同时将开销分别减少近1倍($N$)和1倍($\sqrt{N}/\log(N)$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信