The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment

IF 0.8 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Mark Xavier Bailon, Min-oh Park, Younggyun Choi, D. Reible, Yongseok Hong
{"title":"The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment","authors":"Mark Xavier Bailon, Min-oh Park, Younggyun Choi, D. Reible, Yongseok Hong","doi":"10.12989/MWT.2020.11.1.011","DOIUrl":null,"url":null,"abstract":"The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"11 1","pages":"11-23"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2020.11.1.011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 6

Abstract

The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.
DGTs在评价汞和重金属污染沉积物原位治理效果中的应用
研究了韩国亨山河河口原位沉积物封盖作为重金属风险缓解技术的有效性。此前在河口发现的一些地点显示出中度到高度的汞、甲基汞和其他重金属污染。选择400米× 50米河段进行薄层封盖示范,将总面积分为4个断面,采用不同封盖材料组合(沸石、AC/沸石、AC/砂、沸石/砂)封盖。利用薄膜(DGT)探针的扩散梯度研究了不同部位的孔隙水浓度。所有封顶修改均显示不同重金属孔隙水浓度的降低,顶部5 cm部分重金属的降低幅度大于90%。发现不同金属的相对最大值随着盖帽的增加而转化为较低的深度。对于双层交流电帽,由于交流电密度相对较低,容易发生位移,因此应考虑放置顺序。现场甲基汞(MeHg)测定结果表明,孔隙水中甲基汞(MeHg)和%甲基汞(MeHg)与沉积物中硫化物、铁和锰的最大值吻合良好,表明汞甲基化可能与沉积物中硫酸盐、铁和锰的还原有关。研究结果表明,活性吸附剂AC和沸石的薄层封盖与被动沙盖相结合,是重金属污染沉积物的潜在修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membrane Water Treatment
Membrane Water Treatment ENGINEERING, CHEMICAL-WATER RESOURCES
CiteScore
1.90
自引率
30.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信