Z. Zhao, H. Jing, Xinshuai Shi, Lijun Yang, Q. Yin, Yuan Gao
{"title":"Study on bearing characteristic of rock mass with different structures: Physical modeling","authors":"Z. Zhao, H. Jing, Xinshuai Shi, Lijun Yang, Q. Yin, Yuan Gao","doi":"10.12989/GAE.2021.25.3.179","DOIUrl":null,"url":null,"abstract":"In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) x1000 mm (length)x 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.25.3.179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) x1000 mm (length)x 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.
为了研究不同岩体结构巷道开挖过程中围岩的稳定性,利用自行开发的复杂地下工程二维模拟试验系统,对完整岩体、层状岩体和块状岩体三种类型巷道开挖过程进行了物理模型试验。首先,结合华东某深部矿山的工程背景,根据相似理论对最合适配比的相似材料进行了试验、比较和确定;然后,构建了高度为1000 mm ×长度为1000 mm ×宽度为250 mm的四种不同方案的物理模型。最后,通过仿真测试系统对物理模型施加边界条件后,进行巷道开挖。结果表明,锚杆支护效果对浅埋围岩影响较大,岩体结构会影响围岩的整体稳定性。在此基础上,从不同方案的应力演化特征、应力拱分布及破坏模式对比等方面,进一步探讨了围岩的破坏机制和承载能力。
期刊介绍:
The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications.
Typical subjects covered by the journal include:
- Analytical, computational, and experimental multiscale and interaction mechanics-
Computational and Theoretical Geomechnics-
Foundations-
Tunneling-
Earth Structures-
Site Characterization-
Soil-Structure Interactions